洛谷P2858题解
这是一道裸的第二类区间DP(由已知区间向外扩展)题。
首先定义 \(f_{i,j}\) 为最后 \(j-i+1\) 个数取 \([i,j]\) 这个区间时,\([i,j]\) 这个区间可以产生的最大价值。那么根据定义,\(f_{i,i}=n*a_i\) 。
然后我们枚举区间长度长度,这样保证长度为 \(k+1\) 的区间可以被长度为 \(k\) 的区间向左右扩展得出。
容易写出向外扩展的状态转移方程是 \(f_{i,j}=\text{max}(f_{i+1,j}+(n-k+1)*a_i
,f_{i,j-1}+(n-k+1)*a_j)\)
没了。
代码:
#include<stdio.h>
#define reg register
#define ri reg int
#define rep(i, x, y) for(ri i = x; i <= y; ++i)
#define nrep(i, x, y) for(ri i = x; i >= y; --i)
#define DEBUG 1
#define ll long long
#define il inline
#define swap(a, b) ((a) ^= (b) ^= (a) ^= (b))
#define max(i, j) (i) > (j) ? (i) : (j)
#define min(i, j) (i) < (j) ? (i) : (j)
#define read(i) io.READ(i)
#define print(i) io.WRITE(i)
#define push(i) io.PUSH(i)
struct IO {
#define MAXSIZE (1 << 20)
#define isdigit(x) (x >= '0' && x <= '9')
char buf[MAXSIZE], *p1, *p2;
char pbuf[MAXSIZE], *pp;
#if DEBUG
#else
IO() : p1(buf), p2(buf), pp(pbuf) {}
~IO() {
fwrite(pbuf, 1, pp - pbuf, stdout);
}
#endif
inline char gc() {
#if DEBUG
return getchar();
#endif
if(p1 == p2)
p2 = (p1 = buf) + fread(buf, 1, MAXSIZE, stdin);
return p1 == p2 ? ' ' : *p1++;
}
inline bool blank(char ch) {
return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t';
}
template <class T>
inline void READ(T &x) {
register double tmp = 1;
register bool sign = 0;
x = 0;
register char ch = gc();
for(; !isdigit(ch); ch = gc())
if(ch == '-') sign = 1;
for(; isdigit(ch); ch = gc())
x = x * 10 + (ch - '0');
if(ch == '.')
for(ch = gc(); isdigit(ch); ch = gc())
tmp /= 10.0, x += tmp * (ch - '0');
if(sign) x = -x;
}
inline void READ(char *s) {
register char ch = gc();
for(; blank(ch); ch = gc());
for(; !blank(ch); ch = gc())
*s++ = ch;
*s = 0;
}
inline void READ(char &c) {
for(c = gc(); blank(c); c = gc());
}
inline void PUSH(const char &c) {
#if DEBUG
putchar(c);
#else
if(pp - pbuf == MAXSIZE) {
fwrite(pbuf, 1, MAXSIZE, stdout);
pp = pbuf;
}
*pp++ = c;
#endif
}
template <class T>
inline void WRITE(T x) {
if(x < 0) {
x = -x;
PUSH('-');
}
static T sta[35];
T top = 0;
do {
sta[top++] = x % 10;
x /= 10;
} while(x);
while(top)
PUSH(sta[--top] + '0');
}
template <class T>
inline void WRITE(T x, char lastChar) {
WRITE(x);
PUSH(lastChar);
}
} io;
int n, a[2010], f[2010][2010];
int main(){
read(n);
rep(i, 1, n) read(a[i]), f[i][i] = a[i] * n;
rep(k, 1, n) {
rep(i, 1, n - k + 1) {
ri j = i + k - 1;
f[i][j] = max(f[i + 1][j] + (n - k + 1) * a[i], f[i][j - 1] + (n - k + 1) * a[j]);
}
}
print(f[1][n]);
return 0;
}
洛谷P2858题解的更多相关文章
- [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码
[洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...
- [洛谷p2858] 奶牛零食
题目链接: 点我 题目分析: 这是什么,区间dp吗?怎么大佬都在说区间dp的样子 完蛋区间dp都不知道是啥quq 于是使用了玄学的姿势A过了这道题 设dp[i][j][0]表示第i天,左边选了j个,当 ...
- 洛谷P5759题解
本文摘自本人洛谷博客,原文章地址:https://www.luogu.com.cn/blog/cjtb666anran/solution-p5759 \[这道题重在理解题意 \] 选手编号依次为: \ ...
- 关于三目运算符与if语句的效率与洛谷P2704题解
题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最 ...
- c++并查集配合STL MAP的实现(洛谷P2814题解)
不会并查集的话请将此文与我以前写的并查集一同食用. 原题来自洛谷 原题 文字稿在此: 题目背景 现代的人对于本家族血统越来越感兴趣. 题目描述 给出充足的父子关系,请你编写程序找到某个人的最早的祖先. ...
- 洛谷P2607题解
想要深入学习树形DP,请点击我的博客. 本题的DP模型同 P1352 没有上司的舞会.本题的难点在于如何把基环树DP转化为普通的树上DP. 考虑断边和换根.先找到其中的一个环,在上面随意取两个点, 断 ...
- 洛谷 P2858 [USACO06FEB]奶牛零食Treats for the Cows 题解
P2858 [USACO06FEB]奶牛零食Treats for the Cows 题目描述 FJ has purchased N (1 <= N <= 2000) yummy treat ...
- 洛谷P2858奶牛零食 题解
题目 这个题一开始能看出来是一道动态规划的题目,但是并不知道如何写状态转移方程,但是我们可以想一想这个题应该是一道区间DP,而区间DP的特点就是状态转移方程一般跟该区间的左节点和右节点或者中间断点有关 ...
- 洛谷P2858 奶牛零食 题解 区间DP入门题
题目大意: 约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了 \(N(1 \le N \le 2000)\) 份美味的零食来卖给奶牛们.每天约翰售出一份零 ...
随机推荐
- kubelet分析-csi driver注册分析-Node Driver Registrar源码分析
kubernetes ceph-csi分析目录导航 Node Driver Registrar分析 node-driver-registrar是一个sidecar容器,通过Kubelet的插件注册机制 ...
- 敢为人先,从阿里巴巴云原生团队实践Dapr案例,看分布式应用运行时前景
背景 Dapr是一个由微软主导的云原生开源项目,国内云计算巨头阿里云也积极参与其中,2019年10月首次发布,到今年2月正式发布V1.0版本.在不到一年半的时间内,github star数达到了1.2 ...
- Linux中cut,sort,uniq和wc的用法
一.cut是一个选取命令,就是将一段数据经过分析,取出我们想要的.一般来说,选取信息通常是针对"行"来进行分析的,并不是整篇信息分析的.1.语法格式为:cut [-bn] [fil ...
- 15、修改sqldeveloper的JDK路径
15.1.说明: 1.第一次使用Oracle SQL Developer时会提示选择JDK路径(只会在第一次使用时提示), 如果选择了高版本的JDK(1.8)路径,可能会出现了如下两种情况: (1)s ...
- DRF之权限和频率限制
一.权限 权限可以限制用户对视图的访问和对具体数据对象的访问. 在执行视图的dispatch方法前,会先进行视图访问权限的判断 在通过get_object获取对象时,会进行模型对象访问权限的判断 源码 ...
- APP 抓包(应用层)
0x01 前言: app抓包是逆向协议的前提,也是一个爬虫工程师的基本要求,最近发现这块知识非常欠缺就抓紧补补了(我太菜了) 然后接下来是通过vpn将流量导出到抓包软件的方式,而不是通过wifi设置代 ...
- Androidmanifest.xml文件格式详解(转载)
https://www.jianshu.com/p/eaaae96473f6 来自简书大佬的
- 备战-Java 容器
备战-Java 容器 玉阶生白露,夜久侵罗袜. 简介:备战-Java 容器 一.概述 容器主要包括 Collection 和 Map 两种,Collection 存储着对象的集合,而 Map 存储着k ...
- 基于Flink构建全场景实时数仓
目录: 一. 实时计算初期 二. 实时数仓建设 三. Lambda架构的实时数仓 四. Kappa架构的实时数仓 五. 流批结合的实时数仓 实时计算初期 虽然实时计算在最近几年才火起来,但是在早期也有 ...
- python 17篇 unittest单元测试框架
单元测试:开发程序的人自己测试自己的代码 unittest自动化测试框架 1.单元测试 import unittest def add(a,b): return a+b # 在运行时不要用run un ...