指标监控

跟系统监控一样,在构建应用程序的监控系统之前,首先也需要确定,到底需要监控哪些指标。特别是要清楚,有哪些指标可以用来快速确认应用程序的性能问题。

对系统资源的监控,USE 法简单有效,却不代表其适合应用程序的监控。举个例子,即使在 CPU 使用率很低的时候,也不能说明应用程序就没有性能瓶颈。因为应用程序可能会因为锁或者 RPC 调用等,导致响应缓慢。

所以,应用程序的核心指标,不再是资源的使用情况,而是请求数、错误率和响应时间。这些指标不仅直接关系到用户的使用体验,还反映应用整体的可用性和可靠性。

有了请求数、错误率和响应时间这三个黄金指标之后,我们就可以快速知道,应用是否发生了性能问题。但是,只有这些指标显然还是不够的,因为发生性能问题后,我们还希望能够快速定位“性能瓶颈区”。所以,在我看来,下面几种指标,也是监控应用程序时必不可少的。

第一个,是应用进程的资源使用情况,比如进程占用的 CPU、内存、磁盘 I/O、网络等。使用过多的系统资源,导致应用程序响应缓慢或者错误数升高,是一个最常见的性能问题。

第二个,是应用程序之间调用情况,比如调用频率、错误数、延时等。由于应用程序并不是孤立的,如果其依赖的其他应用出现了性能问题,应用自身性能也会受到影响。

第三个,是应用程序内部核心逻辑的运行情况,比如关键环节的耗时以及执行过程中的错误等。由于这是应用程序内部的状态,从外部通常无法直接获取到详细的性能数据。所以,应用程序在设计和开发时,就应该把这些指标提供出来,以便监控系统可以了解其内部运行状态。

有了应用进程的资源使用指标,你就可以把系统资源的瓶颈跟应用程序关联起来,从而迅速定位因系统资源不足而导致的性能问题;

  • 有了应用程序之间的调用指标,你可以迅速分析出一个请求处理的调用链中,到底哪个组件才是导致性能问题的罪魁祸首;

  • 而有了应用程序内部核心逻辑的运行性能,你就可以更进一步,直接进入应用程序的内部,定位到底是哪个处理环节的函数导致了性能问题。

基于这些思路,我相信你就可以构建出,描述应用程序运行状态的性能指标。再将这些指标纳入我们上一期提到的监控系统(比如 Prometheus + Grafana)中,就可以跟系统监控一样,一方面通过告警系统,把问题及时汇报给相关团队处理;另一方面,通过直观的图形界面,动态展示应用程序的整体性能。

除此之外,由于业务系统通常会涉及到一连串的多个服务,形成一个复杂的分布式调用链。为了迅速定位这类跨应用的性能瓶颈,你还可以使用 Zipkin、Jaeger、Pinpoint 等各类开源工具,来构建全链路跟踪系统。

比如,下图就是一个 Jaeger 调用链跟踪的示例。

全链路跟踪可以帮你迅速定位出,在一个请求处理过程中,哪个环节才是问题根源。比如,从上图中,你就可以很容易看到,这是 Redis 超时导致的问题。

全链路跟踪除了可以帮你快速定位跨应用的性能问题外,还可以帮你生成线上系统的调用拓扑图。这些直观的拓扑图,在分析复杂系统(比如微服务)时尤其有效。

日志监控

性能指标的监控,可以让你迅速定位发生瓶颈的位置,不过只有指标的话往往还不够。比如,同样的一个接口,当请求传入的参数不同时,就可能会导致完全不同的性能问题。所以,除了指标外,我们还需要对这些指标的上下文信息进行监控,而日志正是这些上下文的最佳来源。

对比来看,

  • 指标是特定时间段的数值型测量数据,通常以时间序列的方式处理,适合于实时监控。

  • 而日志则完全不同,日志都是某个时间点的字符串消息,通常需要对搜索引擎进行索引后,才能进行查询和汇总分析。

对日志监控来说,最经典的方法,就是使用 ELK 技术栈,即使用 Elasticsearch、Logstash 和 Kibana 这三个组件的组合。

如下图所示,就是一个经典的 ELK 架构图:

这其中,

  • Logstash 负责对从各个日志源采集日志,然后进行预处理,最后再把初步处理过的日志,发送给 Elasticsearch 进行索引。

  • Elasticsearch 负责对日志进行索引,并提供了一个完整的全文搜索引擎,这样就可以方便你从日志中检索需要的数据。

  • Kibana 则负责对日志进行可视化分析,包括日志搜索、处理以及绚丽的仪表板展示等。

下面这张图,就是一个 Kibana 仪表板的示例,它直观展示了 Apache 的访问概况。

值得注意的是,ELK 技术栈中的 Logstash 资源消耗比较大。所以,在资源紧张的环境中,我们往往使用资源消耗更低的 Fluentd,来替代 Logstash(也就是所谓的 EFK 技术栈)。

小结

今天,我为你梳理了应用程序监控的基本思路。应用程序的监控,可以分为指标监控和日志监控两大部分:

  • 指标监控主要是对一定时间段内性能指标进行测量,然后再通过时间序列的方式,进行处理、存储和告警。

  • 日志监控则可以提供更详细的上下文信息,通常通过 ELK 技术栈来进行收集、索引和图形化展示。

在跨多个不同应用的复杂业务场景中,你还可以构建全链路跟踪系统。这样可以动态跟踪调用链中各个组件的性能,生成整个流程的调用拓扑图,从而加快定位复杂应用的性能问题。

Linux 性能优化笔记:应用监控的更多相关文章

  1. Linux 性能优化笔记:软中断(转载)

    进程的不可中断状态是系统的一种保护机制,可以保证硬件的交互过程不被意外打断. 所以,短时间的不可中断状态是很正常的. 但是,当进程长时间都处于不可中断状态时,你就得当心了.这时,你可以使用 dstat ...

  2. 深挖计算机基础:Linux性能优化学习笔记

    参考极客时间专栏<Linux性能优化实战>学习笔记 一.CPU性能:13讲 Linux性能优化实战学习笔记:第二讲 Linux性能优化实战学习笔记:第三讲 Linux性能优化实战学习笔记: ...

  3. 如何学习Linux性能优化?

    如何学习Linux性能优化? 你是否也曾跟我一样,看了很多书.学了很多 Linux 性能工具,但在面对 Linux 性能问题时,还是束手无策?实际上,性能分析和优化始终是大多数软件工程师的一个痛点.但 ...

  4. Linux性能优化从入门到实战:01 Linux性能优化学习路线

      我通过阅读各种相关书籍,从操作系统原理.到 Linux内核,再到硬件驱动程序等等.   把观察到的性能问题跟系统原理关联起来,特别是把系统从应用程序.库函数.系统调用.再到内核和硬件等不同的层级贯 ...

  5. Linux性能优化-平均负载

    Linux性能优化-平均负载 目录 Linux性能优化-平均负载 平均负载的含义 平均负载为多少时合理 平均负载与 CPU 使用率 平均负载案例分析 场景一:CPU 密集型进程 场景二:I/O 密集型 ...

  6. Android App性能优化笔记之一:性能优化是什么及为什么?

    By Long Luo   周星驰的电影<功夫>里面借火云邪神之口说出了一句至理名言:“天下武功,唯快不破”. 在移动互联网时代,同样如此,留给一个公司的窗口往往只有很短的时间,如何把握住 ...

  7. Linux 性能优化之 IO 子系统 系列 图

    http://blog.sina.com.cn/s/articlelist_1029388674_11_1.html Linux 性能优化之 IO 子系统(一) 本文介绍了对 Linux IO 子系统 ...

  8. MySQL 性能优化-数据库死锁监控

    MySQL性能优化-数据库死锁监控 by:授客 QQ:1033553122 1)表锁定 通过检查 table_locks_waited 和 table_locks_immediate 状态变量来分析表 ...

  9. Linux 性能优化解析

    前情概述 进程调度 老板 cpu 任劳任怨的打工仔 线程 工作在做什么 可运行队列 拥有的工作清单 上下文切换 和老板沟通以便得到老板的想法并及时调整自己的工作 中断 部分工作做完以后还需要及时向老板 ...

随机推荐

  1. kafka删除topic中的数据,适用于比较高的版本

    server.properties中增加选项 delete.topic.enable=true 修改之后重启kafka 进入kafka目录,输入命令 bin/kafka-topics.sh --zoo ...

  2. SQL 添加列,删除列,修改列的类型

    alter table 表名 add 列名 数据类型 如:alter table student add nickname char(20) alter table tableName(表名) add ...

  3. scrapy获取58同城数据

    1. scrapy项目的结构 项目名字 项目名字 spiders文件夹 (存储的是爬虫文件) init 自定义的爬虫文件 核心功能文件 **************** init items 定义数据 ...

  4. Python 练习 人事管理

    人事管理系统介绍:1.展示页面:    ①首页:    ==========欢迎来到简历管理系统v2.1.1==========                1.管理员登录              ...

  5. 算法学习->整数拆分问题

    动态规划典型题目/ 00 题目 将正整数n无需拆分为最大数为k的拆分方案有多少种?​要求所有的拆分方案不重复. 示例: 输入:n=5,k=5 输出:(5,5)=7 示例分析: 5=5 5=4+1 5= ...

  6. Java 如何对文件进行多个Object对象流的读写操作

    思路:把已经序列化的对象存入容器(如LinkedList<?>)中,然后用ObjectInputStream和ObjectOutputStream对这个实例化的LinkedList< ...

  7. Unity Ioc 类型初始值设定项引发异常,The type name or alias SqlServer could not be resolved. Please check your configuration file and verify this type name.

    先看一下unity的配置信息 <unity> <typeAliases> <typeAlias alias="IDatabase" type=&quo ...

  8. [luogu4747]Intrinsic Interval

    有一个结论,答案一定是所有包含其合法区间中$l$最大且$r$最小的 证明比较容易,考虑两个合法区间有交,那么交必然合法,同时交也必然包含该区间,因此这个区间一定是合法的(取$l$最大的和$r$最小的两 ...

  9. 高并发异步解耦利器:RocketMQ究竟强在哪里?

    上篇文章消息队列那么多,为什么建议深入了解下RabbitMQ?我们讲到了消息队列的发展史: 并且详细介绍了RabbitMQ,其功能也是挺强大的,那么,为啥又要搞一个RocketMQ出来呢?是重复造轮子 ...

  10. Collections集合工具类的常用方法

    Collections集合工具类的方法 addAll与shuffle import java.util.ArrayList; import java.util.Collections; /* - ja ...