hudi clustering 数据聚集(二)
小文件合并解析
执行代码:
import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._
val t1 = "t1"
val basePath = "file:///tmp/hudi_data/"
val dataGen = new DataGenerator(Array("2020/03/11"))
// 生成随机数据100条
val updates = convertToStringList(dataGen.generateInserts(100))
val df = spark.read.json(spark.sparkContext.parallelize(updates, 1));
df.write.format("org.apache.hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, t1).
// 每次写入的数据都生成一个新的文件
option("hoodie.parquet.small.file.limit", "0").
// 每次操作之后都会进行clustering操作
option("hoodie.clustering.inline", "true").
// 每4次提交就做一次clustering操作
option("hoodie.clustering.inline.max.commits", "4").
// 指定生成文件最大大小
option("hoodie.clustering.plan.strategy.target.file.max.bytes", "1073741824").
// 指定小文件大小限制,当文件小于该值时,可用于被 clustering 操作
option("hoodie.clustering.plan.strategy.small.file.limit", "629145600").
mode(Append).
save(basePath+t1);
// 创建临时视图,查看当前表内数据总个数
spark.read.format("hudi").load(basePath+t1).createOrReplaceTempView("t1_table")
spark.sql("select count(*) from t1_table").show()
以上示例中,指定了进行 clustering 的触发频率:每4次提交就触发一次,并指定了文件相关大小:生成新文件的最大大小、小文件最小大小。
执行步骤:
1、生成数据,插入数据。
查看当前磁盘上的文件:
查看表内数据个数:
查看 spark-web 上 该 sql 执行读取的文件个数:
所以,当前表中共100条数据,磁盘上生成一个数据文件,在查询该表数据时,只读取了一个文件。
2、重复上面操作两次。
查看当前磁盘上的文件:
查看表内数据个数:
查看 spark-web 上 该 sql 执行读取的文件个数:
所以,目前为止,我们提交了3次写操作,每次生成1个数据文件,共生成了3个数据文件,当查询所有的数据时,需要从3个文件中读取数据。
3、再进行一次数据插入:
查看当前磁盘上的文件:
查看表内数据个数:
查看 spark-web 上 该 sql 执行读取的文件个数:
结论:
1、配置了hoodie.parquet.small.file.limit之后,每次提交新数据,都会生成一个数据文件。
2、在 clustering 之前,每次读取表所有数据的时候,都需要读取所有文件。
3、提交第4次数据之后,触发了 clustering ,生成了一个更大的文件,此时再读取所有数据的时候,就只需要读取合并后的大文件即可。在.hoodie文件夹下,也可以看到 replacecommit 的提交:
小文件合并+sort columns解析
执行代码:
import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._
val t1 = "t1"
val basePath = "file:///tmp/hudi_data/"
val dataGen = new DataGenerator(Array("2020/03/11"))
var a = 0;
for (a <- 1 to 8) {
val updates = convertToStringList(dataGen.generateInserts(10000))
val df = spark.read.json(spark.sparkContext.parallelize(updates, 1));
df.write.format("org.apache.hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, t1).
// 每次写入的数据都生成一个新的文件
option("hoodie.parquet.small.file.limit", "0").
// 每次操作之后都会进行clustering操作
option("hoodie.clustering.inline", "true").
// 每4次提交就做一次clustering操作
option("hoodie.clustering.inline.max.commits", "8").
// 指定生成文件最大大小
option("hoodie.clustering.plan.strategy.target.file.max.bytes", "1400000").
// 指定小文件大小限制,当文件小于该值时,可用于被 clustering 操作
option("hoodie.clustering.plan.strategy.small.file.limit", "1400000").
// 指定排序的列
option("hoodie.clustering.plan.strategy.sort.columns", "fare").
mode(Append).
save(basePath+t1);
// 创建临时视图,查看当前表内数据总个数
spark.read.format("hudi").load(basePath+t1).createOrReplaceTempView("t1_table")
spark.sql("select count(*) from t1_table where fare > 50").show()
}
执行代码分析
该代码比之前代码修改了几个地方:
1、增加了for循环:
因为我们已经知道了在8次提交之后,小文件会合并大文件,所以一个for循环,做8次提交,我们直接看结果就行。
2、增加了 hoodie.clustering.plan.strategy.sort.columns 配置:
这是本次主要的测试点。该配置可以对指定的列进行排序。
即,当做 clustering 的时候,hudi 会重新读取所有文件,并根据指定的列做排序,这样可以把相关的数据聚集在一起,可以做更好的查询过滤(后面会演示说明),而我们要做的对比,就是以 fare 为条件查询数据,观察在 clustering 前后,hudi 会读取的文件个数。
我们想要的结果是,在 clustering 之前,由于没有根据 fare 对数据任何处理,符合过滤条件的数据会分布在各个文件,所以会读取的文件个数很多,过滤效果差。而在 clustering 之后,会根据 fare 列对数据做重新分布,符合过滤条件的数据较为集中,那么读取的数据就会比较少,过滤效果较好。
3、修改了 hoodie.clustering.plan.strategy.target.file.max.bytes 和 hoodie.clustering.plan.strategy.small.file.limit
我们想测的是,clustering 前后过滤的效果,所以文件个数不能够被改变(否则4个文件合并成1个文件后,读取数据时也只会读取1个文件,就看不出来sort是否有效果),所以这里把该值设置成两个较为近似的值,使其既能够触发 clustering,又能够在 clustering 前后文件个数相同。
执行结果:
查看当前磁盘文件:
查看第5次的sql过滤结果:
查看第6次的sql过滤结果:
查看第7次的sql过滤结果:
查看最后一次的sql过滤结果:
结论:
1、在 clustering 之前,过滤 fare 列时,会读取所有的数据。
比如,在执行第5次过滤时,此时表总共有50000行数据,hudi就会扫描50000行数据;在执行第6次过滤时,此时表总共有60000行数据,hudi就会扫描60000行数据;在执行第7次过滤时,此时表总共有70000行数据,hudi就会扫描70000行数据,
2、在 clustering 之后,数据文件个数不变的情况下(前后都是8个数据文件),在第8次过滤时,能够有效应用sort columns的重排列数据,将本应扫描80000行数据降低到只扫描了50405行数据,过滤效果明显提升很多!!
hudi clustering 数据聚集(二)的更多相关文章
- hudi clustering 数据聚集(一)
概要 数据湖的业务场景主要包括对数据库.日志.文件的分析,而管理数据湖有两点比较重要:写入的吞吐量和查询性能,这里主要说明以下问题: 1.为了获得更好的写入吞吐量,通常把数据直接写入文件中,这种情况下 ...
- hudi clustering 数据聚集(三 zorder使用)
目前最新的 hudi 版本为 0.9,暂时还不支持 zorder 功能,但 master 分支已经合入了(RFC-28),所以可以自己编译 master 分支,提前体验下 zorder 效果. 环境 ...
- 基于Apache Hudi构建数据湖的典型应用场景介绍
1. 传统数据湖存在的问题与挑战 传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化.虽然能 ...
- 从txt文件中读取数据放在二维数组中
1.我D盘中的test.txt文件内的内容是这样的,也是随机产生的二维数组 /test.txt/ 5.440000 3.4500006.610000 6.0400008.900000 3.030000 ...
- 决战大数据之二:CentOS 7 最新JDK 8安装
决战大数据之二:CentOS 7 最新JDK 8安装 [TOC] 修改hostname # hostnamectl set-hostname node1 --static # reboot now 重 ...
- [数据清洗]- Pandas 清洗“脏”数据(二)
概要 了解数据 分析数据问题 清洗数据 整合代码 了解数据 在处理任何数据之前,我们的第一任务是理解数据以及数据是干什么用的.我们尝试去理解数据的列/行.记录.数据格式.语义错误.缺失的条目以及错误的 ...
- 机器学习入门-数值特征-进行二值化变化 1.Binarizer(进行数据的二值化操作)
函数说明: 1. Binarizer(threshold=0.9) 将数据进行二值化,threshold表示大于0.9的数据为1,小于0.9的数据为0 对于一些数值型的特征:存在0还有其他的一些数 二 ...
- SQL 2005批量插入数据的二种方法
SQL 2005批量插入数据的二种方法 Posted on 2010-07-22 18:13 moss_tan_jun 阅读(2635) 评论(2) 编辑 收藏 在SQL Server 中插入一条数据 ...
- 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型
from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...
随机推荐
- 关于我刚开始学习c语言的这档事
关于我刚开始学习C语言的这档事 就在9月20日下午,记得王老师曾提及三类人,一类专注于自己内心的感受:一类人专注于探索与创造:还有一类专注于效率的最大化.思绪不禁回想到11号至今的学习过程-- 我的学 ...
- CF453C-Little Pony and Summer Sun Celebration【构造】
正题 题目链接:https://www.luogu.com.cn/problem/CF453C 题目大意 \(n\)个点\(m\)条边的一张无向图,每个节点有一个\(w_i\)表示该点需要经过奇数/偶 ...
- 深入浅出WPF-09.Command(命令)
命令 1)命令系统的基本元素 命令(Command),WPF的命令实际上就是实现了ICommand接口的类,平时使用最多的是RoutedCommand类 命令源(Command Source),即命令 ...
- Ysoserial Commons Collections2分析
Ysoserial Commons Collections2分析 About Commons Collections2 CC2与CC1不同在于CC2用的是Commons Collections4.0; ...
- React Native之新架构中的Turbo Module实现原理分析
有段时间没更新博客了,之前计划由浅到深.从应用到原理,更新一些RN的相关博客.之前陆续的更新了6篇RN应用的相关博客(传送门),后边因时间问题没有继续更新.主要是平时空余时间都用来帮着带娃了,不过还是 ...
- Tomcat实现自定义类加载器
什么是类加载器? 这是官方给的定义 在 Java 虚拟机的实现中,初始类可以作为命令行参数提供. 或者,该实现可以提供一个初始类,该类设置一个类加载器,该类加载器依次加载应用程序. 初始类的其他选择也 ...
- 23.合并k个有序链表
合并 k 个排序链表,返回合并后的排序链表.请分析和描述算法的复杂度. 示例: 输入: [ 1->4->5, 1->3->4, 2->6 ] 输出: 1-&g ...
- vue3.x非兼容的变更
走马观花似的看看从vue2.x开始到vue3.x的一些非兼容性的变更,这样在将来升级过程中遇到那些奇奇怪怪的不能用的时候,就会很容易解决啦. 全局 API 全局 Vue API 已更改为使用应用程序实 ...
- Convolutional Neural Network-week1编程题(TensorFlow实现手势数字识别)
1. TensorFlow model import math import numpy as np import h5py import matplotlib.pyplot as plt impor ...
- Intellij IDEA 2021.2.3 最新版免费激活教程(可激活至 2099 年,亲测有效)
申明,本教程 Intellij IDEA 最新版破解.激活码均收集与网络,请勿商用,仅供个人学习使用,如有侵权,请联系作者删除.如条件允许,建议大家购买正版. 本教程更新于:2021 年 10 月 ...