标题效果:YT城市是一个精心规划的城市。这个城市是东西向和南北向干道成n×n地区性。简单。可以YT作为一个城市广场,每个区域也可被视为一个正方形。因此,。YT市中含有(n+1)×(n+1)交叉口和2n×(n+1)双向通道(缩写路),主干道上两个相邻的交叉路口。

下图为一张YT市的地图(n = 2),城市被划分为2×2个区域。包含3×3个交叉路口和12条双向道路。 小Z作为该市的市长,他依据统计信息得到了每天上班高峰期间YT市每条道路两个方向的人流量,即在高峰期间沿着该方向通过这条道路的人数。每个交叉路口都有不同的海拔高度值,YT市市民觉得爬坡是一件很累的事情,每向上爬h的高度。就须要消耗h的体力。

假设是下坡的话,则不须要耗费体力。

因此假设一段道路的终点海拔减去起点海拔的值为h(注意h可能是负数),那么一个人经过这段路所消耗的体力是max{0,
h}(这里max{a, b}表示取a, b两个值中的较大值)。 小Z还測量得到这个城市西北角的交叉路口海拔为0,东南角的交叉路口海拔为1(如上图所看到的),但其他交叉路口的海拔高度都无法得知。

小Z想知道在最理想的情况下(即你能够随意如果其他路口的海拔高度),每天上班高峰期间全部人爬坡所消耗的整体力和的最小值。

首先没有规定海拔高度是整数 所以非常明显海拔两两不同这个条件能够无视了

easy发现答案一定是全部的0连在一起 1连在一起 中间有一条分界线 分界线上全部的边权和就是答案

直接最小割一定挂 考虑到这是平面图 所以我们建立对偶图 即左边界和下边界为起点 右边界和上边界为终点 全部被边围起来的区域是点 每条边沿中点逆时针旋转90° 跑一遍最短路就可以

尼玛建图都没建错能把堆优化Dijkstra写挂我也是醉了

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 250500
#define S (n*n+1)
#define T (n*n+2)
using namespace std;
struct abcd{
int to,f,next;
}table[M<<2];
int head[M],tot;
int n;
int f[M],pos[M],heap[M],top;
void Push_Up(int t)
{
while(t>1)
{
if(f[heap[t]]<f[heap[t>>1]])
swap(heap[t],heap[t>>1]),
swap(pos[heap[t]],pos[heap[t>>1]]),
t>>=1;
else
break;
}
}
void Insert(int x)
{
heap[++top]=x;
pos[x]=top;
Push_Up(top);
}
void Pop()
{
pos[heap[1]]=0;
heap[1]=heap[top--];
if(top) pos[heap[1]]=1;
int t=2;
while(t<top)
{
if(f[heap[t+1]]<f[heap[t]])
++t;
if(f[heap[t]]<f[heap[t>>1]])
swap(heap[t],heap[t>>1]),
swap(pos[heap[t]],pos[heap[t>>1]]),
t<<=1;
else
break;
}
}
void Dijkstra()
{
int i;
memset(f,0x3f,sizeof f);f[S]=0;
for(i=1;i<=T;i++)
Insert(i);
while(top)
{
int x=heap[1];Pop();
for(i=head[x];i;i=table[i].next)
if(f[table[i].to]>f[x]+table[i].f)
f[table[i].to]=f[x]+table[i].f,Push_Up(pos[table[i].to]);
}
}
void Add(int x,int y,int z)
{
table[++tot].to=y;
table[tot].f=z;
table[tot].next=head[x];
head[x]=tot;
}
int main()
{
int i,j,x;
cin>>n;
for(i=0;i<=n;i++)
for(j=1;j<=n;j++)
{
scanf("%d",&x);
if(i==0) Add(i*n+j,T,x);
else if(i==n) Add(S,i*n-n+j,x);
else Add(i*n+j,i*n-n+j,x);
}
for(i=1;i<=n;i++)
for(j=0;j<=n;j++)
{
scanf("%d",&x);
if(j==0) Add(S,i*n-n+1,x);
else if(j==n) Add(i*n-n+j,T,x);
else Add(i*n-n+j,i*n-n+j+1,x);
}
for(i=0;i<=n;i++)
for(j=1;j<=n;j++)
{
scanf("%d",&x);
if(i==0) Add(T,i*n+j,x);
else if(i==n) Add(i*n-n+j,S,x);
else Add(i*n-n+j,i*n+j,x);
}
for(i=1;i<=n;i++)
for(j=0;j<=n;j++)
{
scanf("%d",&x);
if(j==0) Add(i*n-n+1,S,x);
else if(j==n) Add(T,i*n-n+j,x);
else Add(i*n-n+j+1,i*n-n+j,x);
}
Dijkstra();
cout<<f[T]<<endl;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

BZOJ 2007 NOI2010 海拔高度 最小减产计划的更多相关文章

  1. bzoj 2007 [Noi2010]海拔——最小割转最短路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2007 一个点的高度一定不是0就是1.答案一定形如一个左上角的连通块全是0的点.一个右下角的连 ...

  2. BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)

    题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...

  3. [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】

    题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...

  4. BZOJ 2007: [Noi2010]海拔

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2410  Solved: 1142[Submit][Status] ...

  5. bzoj 2007: [Noi2010]海拔【最小割+dijskstra】

    上来就跑3e5的最大流--脑子抽了 很容易看出,每个地方的海拔都是0或1因为再高了没有意义,又,上去下来再上去没有意义,所以最后一定是从s连着一片0,剩下连着t一片1,然后有贡献的就是01交接的那些边 ...

  6. BZOJ 2007 海拔(平面图最小割转对偶图最短路)

    首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...

  7. 【BZOJ 2007】 2007: [Noi2010]海拔 (平面图转对偶图+spfa)

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2504  Solved: 1195 Description YT市 ...

  8. 2007: [Noi2010]海拔

    2007: [Noi2010]海拔 https://www.lydsy.com/JudgeOnline/problem.php?id=2007 分析: 平面图最小割. S在左下,T在右上,从S到T的一 ...

  9. loj #2007. 「SCOI2015」国旗计划

    #2007. 「SCOI2015」国旗计划   题目描述 A 国正在开展一项伟大的计划 —— 国旗计划.这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈.这项计划需要多名边防战士以接力的形式共同完成 ...

随机推荐

  1. Rudiments 0.42 发布,C++ 常用工具包 - 开源中国社区

    Rudiments 0.42 发布,C++ 常用工具包 - 开源中国社区 Rudiments 0.42 发布,C++ 常用工具包

  2. UIImagePickerController本地化控件文字

    在使用UIImagePickerController时候,你会发如今选择照片或者拍照的时候,界面的很多控件都是英文的,比方"Cancel","Choose"等. ...

  3. premake 使用clang替换gcc

    接着前文:premake在Ubuntu和GCC环境下创建简单的C++工程 由于clang支持gcc所有参数,所以使得在premake中替换gcc变得很简单.基本上就是通过传递参数或者设置环境变量的方式 ...

  4. Android 启动过程的底层实现

    转载请标明出处:  http://blog.csdn.net/yujun411522/article/details/46367787 本文出自:[yujun411522的博客] 3.1 androi ...

  5. 【足迹C++primer】30、概要(泛型算法)

    概要(泛型算法) 大多数算法的头文件中定义algorithm在. 标准库也是第一个文件numeric它定义了一套通用算法. #include<iostream> #include<n ...

  6. jar包有嵌套的jar的打包成jar的方法

    1.先写一个类,将其打包成jar包. 代码如下: package com.wjy.jar; public class GetUserName { public String getUserName() ...

  7. PS顶级胶片滤镜插件 Alien Skin Exposure v6.x最新通用汉化补丁

    Alien Skin Exposure v6.0 是一款专业的PS胶片调色滤镜软件,使用Alien Skin Exposure可以迅速将照片调出各种胶片效果,如电影胶片.宝丽来胶片效果.波拉潘胶片效果 ...

  8. PowerDesigner 对 Oracle 作 逆向工程

    原文 PowerDesigner 对 Oracle 作 逆向工程 目的 PowerDesigner 15对OracleClient 11g进行逆向工程 环境 Win7 64位系统 Oracle 11g ...

  9. windows phone (23) ScrollViewer元素

    原文:windows phone (23) ScrollViewer元素 ScrollViewer类表示可包含其他可见元素的可滚动区域,一般会用在屏幕的宽度和高度不够用时,作为一种延伸使用,参考书上称 ...

  10. HTTPDNS成为移动互联网的标配–原因与原理解析(转)

    DNS,作用就是将域名解析成IP.一个DNS查询,先从本地缓存查找,如果没有或者已经过期,就从DNS服务器查询,如果客户端没有主动设置DNS服务器,一般是从服务商DNS服务器上查找.这就出现了不可控. ...