传送门:Visible Lattice Points

题意:0<=x,y,z<=n,求有多少对xyz满足gcd(x,y,z)=1。

设f(d) = GCD(a,b,c) = d的种类数 ;

F(n) 为GCD(a,b,c) = d 的倍数的种类数, n%a == 0 n%b==0 n%c==0。

即 :F(d) = (N/d)*(N/d)*(N/d);

则f(d) = sigma( mu[n/d]*F(n), d|n )

由于d = 1 所以f(1) = sigma( mu[n]*F(n) ) = sigma( mu[n]*(N/n)*(N/n)*(N/n) );

由于0能够取到,所以对于a,b,c 要讨论一个为0 ,两个为0的情况 (3种).

#pragma comment(linker,"/STACK:1024000000,1024000000")
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <limits.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 100000000
#define inf 0x3f3f3f3f
#define eps 1e-6
#define N 1000000
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define PII pair<int,int>
using namespace std;
inline int read()
{
char ch=getchar();int x=,f=;
while(ch>''||ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
bool vis[N+];
int mu[N+],prime[N+],sum[N+],num[N+];
void Mobius()
{
memset(vis,false,sizeof(vis));
mu[]=;
int tot=;
for(int i=;i<=N;i++)
{
if(!vis[i])
{
prime[tot++]=i;
mu[i]=-;
}
for(int j=;j<tot;j++)
{
if(i*prime[j]>N)break;
vis[i*prime[j]]=true;
if(i%prime[j]==)
{
mu[i*prime[j]]=;
break;
}
else
{
mu[i*prime[j]]=-mu[i];
}
}
}
for(int i=;i<=N;i++)sum[i]=sum[i-]+mu[i];
}
LL solve(int n)
{
LL res=;
for(int i=,last=;i<=n;i=last+)
{
last=n/(n/i);
res+=(LL)(sum[last]-sum[i-])*(n/i)*(n/i)*(n/i+);
}
return res;
} int main()
{
int T,n;
Mobius();
T=read();
while(T--)
{
n=read();
LL ans=solve(n);
printf("%lld\n",ans);
}
}

SPOJ 7001(莫比乌斯反演)的更多相关文章

  1. SPOJ PGCD(莫比乌斯反演)

    传送门:Primes in GCD Table 题意:给定两个数和,其中,,求为质数的有多少对?其中和的范围是. 分析:这题不能枚举质数来进行莫比乌斯反演,得预处理出∑υ(n/p)(n%p==0). ...

  2. bzoj 2820 / SPOJ PGCD 莫比乌斯反演

    那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j= ...

  3. SPOJ - VLATTICE (莫比乌斯反演)

    Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many latt ...

  4. spoj 7001. Visible Lattice Points GCD问题 莫比乌斯反演

    SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N la ...

  5. SPOJ 7001 VLATTICE【莫比乌斯反演】

    题目链接: http://www.spoj.com/problems/VLATTICE/ 题意: 1≤x,y,z≤n,问有多少对(x,y,z)使得gcd(x,y,z)=1 分析: 欧拉搞不了了,我们用 ...

  6. SPOJ 7001 VLATTICE - Visible Lattice Points(莫比乌斯反演)

    题目链接:http://www.spoj.com/problems/VLATTICE/ 题意:求gcd(a, b, c) = 1    a,b,c <=N 的对数. 思路:我们令函数g(x)为g ...

  7. SPOJ 7001. Visible Lattice Points (莫比乌斯反演)

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  8. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3

    http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...

  9. 【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)

    [BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n ...

随机推荐

  1. C++-struct类的新特性当class用

    #include <iostream> #include <iomanip> #include <string> using namespace std; stru ...

  2. SqlServer和Oracle中一些常用的sql语句7 游标

    declare db_cursor4 scroll cursor for select * from 供应商 --声明游标 open db_cursor4 --打开游标 fetch first fro ...

  3. 高焕堂《android从程序员到架构师之路》 YY讲坛直面大师学习架构设计

    <android从程序员到架构师之路>YY讲坛活动:  sundy携手高焕堂老师全程YY答疑 与大师一起,分享android技术 时间:7月21日下午2:00   报名联系QQ:22243 ...

  4. 基于visual Studio2013解决C语言竞赛题之1058打印数字

       题目 解决代码及点评 /************************************************************************/ /* 58 ...

  5. Paip.断点调试MYSQL存储过程跟函数的解决方案大法

    Paip.断点调试MYSQL存储过程跟函数的解决方案大法 作者Attilax ,  EMAIL:1466519819@qq.com  来源:attilax的专栏 地址:http://blog.csdn ...

  6. uva 1390 - Interconnect(期望+哈希+记忆化)

    option=com_onlinejudge&Itemid=8&page=show_problem&category=514&problem=4136&mosm ...

  7. 开始翻译Windows Phone 8 Development for Absolute Beginners教程

    Bob Tabor (LearnVisualStudio.NET)和Clint Rutkas (Microsoft/Channel9)合作推出了超过11小时的针对初学者的Windows Phone 8 ...

  8. Ruby on Rails 實戰聖經阅读(二)

    1.操作系统 centos5.4 2.安装ruby yum install ruby 会安装得到 1.8.5 如果你公司用的是1.8.X就无所谓了, 拿这个学习就行了 如果你们公司用的是1.9.X,那 ...

  9. Cocos2dx中Plugin-X 在android下的整合

    直接拉plugin-x中的jar包导入到Eclipse中就可以.用这么麻烦的工具干嘛.

  10. android Activity切换动画效果

    为Activity设置左右进出的效果,能够通过在Mainfest.xml文件里设置主题的方式来实现.还能够使用java代码. 一.设置样式 先看看实现动画的样式: <style name=&qu ...