难受啊,怎么又遇到我不会的题了(捂脸)

如题,这是一道数位DP,随便找了个博客居然就是我们大YZ的……果然nb,然后就是改改模版++注释就好的了,直接看注释吧,就是用1~B - 1~A-1而已,枚举全部位然后判一下是不是上限边缘和前导零就OK

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
LL bit[]; int len,a[];
LL as[],ret[];//ret表示假如是上限边缘,后面有多少种填的方式
LL f[][][];
//f[k][fg][z]表示当前这个数x,搞到第k位的时候的数目
//fg表示该位是不是在上限边缘 z表示目前是否还是前导零
LL dfs(int x,int k,int fg,int z)
{
if(k==len+)return ;
if(f[k][fg][z]!=-)return f[k][fg][z]; LL ans=;
if(fg==)//如果前面的部分处于上限边缘
{
for(int i=;i<a[k];i++)//不填上限边缘,枚举填什么
{
if(z==&&i==)ans+=dfs(x,k+,,);
else
{
ans+=dfs(x,k+,,);
if(i==x)ans+=bit[len-k];
}
//如果i是要统计次数的那个数字,而且不是在前导零的时候,而且还不是在上限的边缘
//那么后面几位的数字有多少种填法x就出现了几次
}
//该位填上限边缘
if(z==&&a[k]==)ans+=dfs(x,k+,,);
else
{
ans+=dfs(x,k+,,);
if(a[k]==x)ans+=ret[k];
}
//如果填的是要统计次数的那个数字 而且不是在前导零的时候
//那么后面的数字最多有多少种填法x就出现了几次
}
else//没有限制
{
for(int i=;i<=;i++)//同上
{
if(z==&&i==)ans+=dfs(x,k+,,);
else
{
ans+=dfs(x,k+,,);
if(i==x)ans+=bit[len-k];
}
}
}
f[k][fg][z]=ans;
return ans;
}
char s[];
void cl()//把A减1
{
int t=len;
while(t>&&s[t]==''){s[t]='';t--;}
s[t]--;
if(s[t]==)
{
len--;
for(int i=;i<=len;i++)s[i]=s[i+]-'';
}
}
int main()
{
freopen("dream.in","r",stdin);
freopen("dream.out","w",stdout);
bit[]=;for(int i=;i<=;i++)bit[i]=bit[i-]*;
memset(as,,sizeof(as)); scanf("%s",s+);len=strlen(s+);cl();
for(int i=;i<=len;i++)a[i]=s[i]-'';
//0的情况,所以填的方案都要+1
ret[len]=;for(int i=len-;i>=;i--)ret[i]=a[i+]*bit[len-i-]+ret[i+];
for(int i=;i<=;i++)
{
memset(f,-,sizeof(f));
as[i]-=dfs(i,,,);
} scanf("%s",s+);len=strlen(s+);
for(int i=;i<=len;i++)a[i]=s[i]-''; ret[len]=;for(int i=len-;i>=;i--)ret[i]=a[i+]*bit[len-i-]+ret[i+];
for(int i=;i<=;i++)
{
memset(f,-,sizeof(f));
as[i]+=dfs(i,,,);
} for(int i=;i<;i++)printf("%d ",as[i]);
printf("%d\n",as[]);
return ;
}

bzoj1833: [ZJOI2010]count 数字计数&&USACO37 Cow Queueing 数数的梦(数位DP)的更多相关文章

  1. [BZOJ1833][ZJOI2010]count 数字计数

    [BZOJ1833][ZJOI2010]count 数字计数 试题描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入 输入文件中仅包含一行两个整数a ...

  2. BZOJ1833 ZJOI2010 count 数字计数 【数位DP】

    BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...

  3. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  4. [BZOJ1833][ZJOI2010]Count数字计数(DP)

    数位DP学傻了,怎么写最后都写不下去了. 这题严格上来说应该不属于数位DP?只是普通DP加上一些统计上的判断吧. 首先复杂度只与数的位数$\omega$有关,所以怎么挥霍都不会超. f[i][j][k ...

  5. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  6. bzoj1833: [ZJOI2010]count 数字计数 && codevs1359 数字计数

    bzoj1833 codevs1359 这道题也是道数位dp 因为0有前导0这一说卡了很久 最后发现用所有位数减1~9的位数就okay.....orzczl大爷 其他就跟51nod那道统计1出现次数一 ...

  7. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

  8. BZOJ1833 [ZJOI2010]count 数字计数 【数学 Or 数位dp】

    题目 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中仅包含一行两个整数a.b,含义如上所述. 输出格式 输出文件中包含一行10个整数, ...

  9. 【数位dp】bzoj1833: [ZJOI2010]count 数字计数

    数位dp姿势一直很差啊:顺便庆祝一下1A Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a ...

随机推荐

  1. php添加了环境变更,还是显示 不是内部或外部命令 (注:添加到目录即可,不加 php.exe )

    重新配置了PHP环境,要安全PEAR扩展,CMD窗口运行PHP,提示不是内部或者外部命令或者可执行文件,解决方法是把PHP目录加入系统环境变量,不然的话,你只能CD到PHP安装目录下来运行PHP命令.

  2. ES6(字符串)

    ES6新增字符串特性 一.Unicode的表示法 当码值>2个字节(0xff) 即第一个数字未处理,不显示 处理这种超过2字节的情况,用{}包起来即可 二.API 1.ES5中 码值>2个 ...

  3. Leetcode 233.数字1的个数

    数字1的个数 给定一个整数 n,计算所有小于等于 n 的非负整数中数字 1 出现的个数. 示例: 输入: 13 输出: 6 解释: 数字 1 出现在以下数字中: 1, 10, 11, 12, 13 . ...

  4. PTA 04-树6 Complete Binary Search Tree (30分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/669 5-7 Complete Binary Search Tree   (30分) A ...

  5. poj 3683 2-sat问题,输出任意一组可行解

    /* 2sat问题 输出任意一组可行解 */ #include<stdio.h> #include<string.h> #include<stdlib.h> #in ...

  6. linux rdesktop远程Win7老是提示密码错误问题解决

    最近使用rdesktop远程Win7老是提示密码错误,输了N次,无比确认密码是正确的. 在Win7系统本身登录也是正常的. 但rdesktop远程就是报密码错误. 开始怀疑更新了最新版本问题,但是使用 ...

  7. BZOJ3926 (后缀自动机)

    BZOJ3926 诸神眷顾的幻想乡 Problem : 给一个n个节点的树(n<=10^5), 每个点有一种颜色(c<=10), 询问所有点对之间路径组成字符串的种类.保证叶子节点小于等于 ...

  8. Linux内核设计与实现——读书笔记2:进程管理

    1.进程: (1)处于执行期的程序,但不止是代码,还包括各种程序运行时所需的资源,实际上进程是正在执行的 程序的实时结果. (2)程序的本身并不是进程,进程是处于执行期的程序及其相关资源的总称. (3 ...

  9. MITM Proxy环境搭建

    MITM_Proxy环境搭建 环境要求 系统环境要求: Ubuntu 14.04 x64,CentOS 7 x64以上版本系统(建议使用xubuntu 14.04 x64,稳定硬件要求低) Pytho ...

  10. Object_C 定义全局宏的颜色时,报“Expected identifier”的错误

    在定义全局颜色宏的时候,为了整齐把空格删了,写在了同一行里,调用的时候,出错提示“Expected identifier”,如下: 如果宏定义如上那样的话,在调用的时候,会出现如下的问题: 百思不得解 ...