P1775 古代人的难题_NOI导刊2010提高(02)

P1936 水晶灯火灵

斐波那契数列

1.x,y∈[1…k],且x,y,k∈Z

2.(x^2-xy-y^2)^2=1

给你一个整数k,求一组满足上述条件的x,y并且使得x^2+y^2的值最大。

小FF得到答案后,用石笔将答案书写在羊皮纸上,那么就能到达王室的遗产所在地了。

证明可直接转%%大佬博客%%

化简式子:

$(x^2-xy-y^2)^2=1$

$(y^2+xy-x^2)^2=1$

$((x+y)^2+xy+2*x^2)^2=1$

$((x+y)^2+(x+y)*x+x^2)^2=1$

斐波那契数列的性质之一:

${f_n}^2-f_{n-1}*f_{n+1}=-1^{n-1}$

把$f_{n+1}$替换成$f_n+f_{n-1}$

${f_n}^2-f_{n}*f_{n-1}-{f_{n-1}}^2=-1^{n-1}$

然后就发现这两个式子很像

我们要求$x^2+y^2$的最大值。

就是求${f[n]}^2+{f[n-1]}^2$的最大值。

#include<iostream>
#include<cstdio> #define N 10000
#define LL long long
using namespace std; LL f[N],n; int main()
{
scanf("%lld",&n);
f[]=f[]=;
for(int i=;;i++){
f[i]=f[i-]+f[i-];
if(f[i]>n){
printf("%lld %lld\n",f[i-],f[i-]);
return ;
}
} return ;
}

洛谷——P1775 古代人的难题_NOI导刊2010提高(02)&& P1936 水晶灯火灵(斐波那契数列)的更多相关文章

  1. 洛谷—— P1775 古代人的难题_NOI导刊2010提高(02)

    P1775 古代人的难题_NOI导刊2010提高(02) 题目描述 门打开了,里面果然是个很大的厅堂.但可惜厅堂内除了中央的一张羊皮纸和一支精致的石笔,周围几具骷髅外什么也没有.难道这就是王室的遗产? ...

  2. 洛谷P1936 水晶灯火灵 P1775 古代人的难题_NOI导刊2010提高(02)【重题请做P1936】

    首先我要说明,此题(古代人的难题)与水晶灯火灵是一模一样的! 古代人的难题 (File IO): input:puzzle.in output:puzzle.out 时间限制: 1000 ms  空间 ...

  3. luogu P1775 古代人的难题_NOI导刊2010提高(02)(斐波纳契+数学)

    题意 已知x,y为整数,且满足以下两个条件: 1.x,y∈[1…k],且x,y,k∈Z 2.(x^2-xy-y^2)^2=1 给你一个整数k,求一组满足上述条件的x,y并且使得x^2+y^2的值最大. ...

  4. 洛谷P1771 方程的解_NOI导刊2010提高(01)

    题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...

  5. 洛谷 P1807 最长路_NOI导刊2010提高(07) 题解

    P1807 最长路_NOI导刊2010提高(07) 题目描述 设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j.设w(i,j)为边的长度,请设计算法,计算 ...

  6. 洛谷 P1807 最长路_NOI导刊2010提高(07)

    最长路 #include <iostream> #include <cstdio> #include <cstring> #include <queue> ...

  7. 洛谷 P1807 最长路_NOI导刊2010提高(07)题解

    相当与一个拓扑排序的模板题吧 蒟蒻的辛酸史 题目大意:给你一个有向无环图,让你求出1到n的最长路,如果没有路径,就输出-1 思路:一开始以为是一个很裸的拓扑排序 就不看题目,直接打了一遍拓扑排序 然后 ...

  8. 洛谷P1807 最长路_NOI导刊2010提高(07)

    //拓扑排序求最长路 #include<bits/stdc++.h> #include<queue> using namespace std; const int INF=0x ...

  9. 图论--最长路--洛谷P1807 最长路_NOI导刊2010提高(07)

    题目描述 设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j.设w(i,j)为边的长度,请设计算法,计算图G中<1,n>间的最长路径. 输入格式 ...

随机推荐

  1. Codeforces Round #311 (Div. 2) D - Vitaly and Cycle

    D. Vitaly and Cycle time limit per test 1 second memory limit per test 256 megabytes input standard ...

  2. eclipse android开发,文本编辑xml文件,给控件添加ID后,R.java,不自动的问题。

    直接编辑xml文件给控件添加id,不自动更新.原来的id写法:@id/et_tel 然后改写成这样:@+id/et_tel  然后就好了!操`1

  3. iOS中打包.a静态库

    1.新建.a静态库工程 需要选择Static Library静态库工程模板新建工程,如下图: 新建静态库工程 实现需要打包的类,如下图: 实现需要打包的类 2.设置需要暴露的头文件 添加Headers ...

  4. 6 WPF控件

    WPF控件分类: 内容控件 标题内容控件 文本控件 列表控件 基于范围的控件 日期控件 控件类 控件是与用户交互的元素.控件可以获得焦点,能接受键盘或鼠标的输入. 所有控件的基类是System.Win ...

  5. TypeError: expected bytes-like object, not str

    报错内容:TypeError: expected bytes-like object, not str 例: a = base64.b64encode(temp) 改为: a = base64.b64 ...

  6. bzoj1778

    高斯消元+矩阵的逆 来自popoqqq大神 求矩阵的逆:把I-T放在左边,P/Q*S放在右边,这样就形成了一个n*2n的矩阵,然后把左边高斯消元,右边就是求完逆的矩阵,其实就是ans,矩阵的逆跟乘法逆 ...

  7. gerrit下载

    http://central.maven.org/maven2/com/google/gerrit/gerrit-war/2.11.4/

  8. 如何过滤 adb logcat 输出(转载)

    转自:http://www.cnblogs.com/imouto/archive/2012/12/11/filtering-adb-logcat-output.html 简介: 本文介绍如何在 she ...

  9. bzoj 2878: [Noi2012]迷失游乐园【树上期望dp+基环树】

    参考:https://blog.csdn.net/shiyukun1998/article/details/44684947 先看对于树的情况 设d[u]为点u向儿子走的期望长度和,du[u]为u点的 ...

  10. Final关键字解析

    final 在 Java 中是一个保留的关键字,可以声明变量.方法.类. 什么是final变量 / 类 / 方法? 任何变量前被 final 修饰就是 final 变量,定义的类前被 final 修饰 ...