P1775 古代人的难题_NOI导刊2010提高(02)

P1936 水晶灯火灵

斐波那契数列

1.x,y∈[1…k],且x,y,k∈Z

2.(x^2-xy-y^2)^2=1

给你一个整数k,求一组满足上述条件的x,y并且使得x^2+y^2的值最大。

小FF得到答案后,用石笔将答案书写在羊皮纸上,那么就能到达王室的遗产所在地了。

证明可直接转%%大佬博客%%

化简式子:

$(x^2-xy-y^2)^2=1$

$(y^2+xy-x^2)^2=1$

$((x+y)^2+xy+2*x^2)^2=1$

$((x+y)^2+(x+y)*x+x^2)^2=1$

斐波那契数列的性质之一:

${f_n}^2-f_{n-1}*f_{n+1}=-1^{n-1}$

把$f_{n+1}$替换成$f_n+f_{n-1}$

${f_n}^2-f_{n}*f_{n-1}-{f_{n-1}}^2=-1^{n-1}$

然后就发现这两个式子很像

我们要求$x^2+y^2$的最大值。

就是求${f[n]}^2+{f[n-1]}^2$的最大值。

#include<iostream>
#include<cstdio> #define N 10000
#define LL long long
using namespace std; LL f[N],n; int main()
{
scanf("%lld",&n);
f[]=f[]=;
for(int i=;;i++){
f[i]=f[i-]+f[i-];
if(f[i]>n){
printf("%lld %lld\n",f[i-],f[i-]);
return ;
}
} return ;
}

洛谷——P1775 古代人的难题_NOI导刊2010提高(02)&& P1936 水晶灯火灵(斐波那契数列)的更多相关文章

  1. 洛谷—— P1775 古代人的难题_NOI导刊2010提高(02)

    P1775 古代人的难题_NOI导刊2010提高(02) 题目描述 门打开了,里面果然是个很大的厅堂.但可惜厅堂内除了中央的一张羊皮纸和一支精致的石笔,周围几具骷髅外什么也没有.难道这就是王室的遗产? ...

  2. 洛谷P1936 水晶灯火灵 P1775 古代人的难题_NOI导刊2010提高(02)【重题请做P1936】

    首先我要说明,此题(古代人的难题)与水晶灯火灵是一模一样的! 古代人的难题 (File IO): input:puzzle.in output:puzzle.out 时间限制: 1000 ms  空间 ...

  3. luogu P1775 古代人的难题_NOI导刊2010提高(02)(斐波纳契+数学)

    题意 已知x,y为整数,且满足以下两个条件: 1.x,y∈[1…k],且x,y,k∈Z 2.(x^2-xy-y^2)^2=1 给你一个整数k,求一组满足上述条件的x,y并且使得x^2+y^2的值最大. ...

  4. 洛谷P1771 方程的解_NOI导刊2010提高(01)

    题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...

  5. 洛谷 P1807 最长路_NOI导刊2010提高(07) 题解

    P1807 最长路_NOI导刊2010提高(07) 题目描述 设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j.设w(i,j)为边的长度,请设计算法,计算 ...

  6. 洛谷 P1807 最长路_NOI导刊2010提高(07)

    最长路 #include <iostream> #include <cstdio> #include <cstring> #include <queue> ...

  7. 洛谷 P1807 最长路_NOI导刊2010提高(07)题解

    相当与一个拓扑排序的模板题吧 蒟蒻的辛酸史 题目大意:给你一个有向无环图,让你求出1到n的最长路,如果没有路径,就输出-1 思路:一开始以为是一个很裸的拓扑排序 就不看题目,直接打了一遍拓扑排序 然后 ...

  8. 洛谷P1807 最长路_NOI导刊2010提高(07)

    //拓扑排序求最长路 #include<bits/stdc++.h> #include<queue> using namespace std; const int INF=0x ...

  9. 图论--最长路--洛谷P1807 最长路_NOI导刊2010提高(07)

    题目描述 设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j.设w(i,j)为边的长度,请设计算法,计算图G中<1,n>间的最长路径. 输入格式 ...

随机推荐

  1. C中 数组和指针的异同

    数组在很多情况下是和指针等价的,数组的下标运算和指针的解引用也有等价形式:arr[i] == *(arr + 1):但是也有一些情况下数组和指针是不一样的:extern int arr[]; exte ...

  2. go13---反射reflection

    package main /** 反射reflection 反射可大大提高程序的灵活性,使得 interface{} 有更大的发挥余地 反射使用 TypeOf 和 ValueOf 函数从接口中获取目标 ...

  3. YTU 2543: 数字整除

    2543: 数字整除 时间限制: 1 Sec  内存限制: 128 MB 提交: 33  解决: 8 题目描述 定理:把一个至少两位的正整数的个位数字去掉,再从余下的数中减去个位数的5倍.当且仅当差是 ...

  4. Cordova 开发 App

    Cordova 是一个开源的移动开发框架.允许你用标准的 Web 技术——HTML5,CSS3 和 JavaScript 做跨平台开发.应用在每个平台的具体执行被封装了起来,并依靠符合标准的 API ...

  5. python 之filter()函数

    filter()函数是 Python 内置的另一个有用的高阶函数,filter()函数接收一个函数 f 和一个list,这个函数 f 的作用是对每个元素进行判断,返回 True或 False,filt ...

  6. bat 截取字符串(for命令) 推荐收藏

    摘自:http://www.jb51.net/article/50354.htm 今天需要用批处理命令处理文件夹中的文件,需要用到bat中的for命令以及字符串截取的一些命令.在上面的链接中找到许多有 ...

  7. [转] 本地项目上传github (新项目 / 旧项目)

    前置:安装Git Bash,在github上新建仓库repository 1.右键点击项目所在文件夹,运行: git bash here.在git bash窗口运行命令 git init 把这个目录变 ...

  8. Could not find modernizr-2.6.2 in any of the sources

  9. oracle创建数据库与配置监听器

    上述是数据库创建完毕 *检测创建 -------------------------------------------------------------2配置监听器---------------- ...

  10. 常用JavaScript代码库(又名:WFang.js)

    1.根据公司项目封装ajax请求,结合layer框架一起使用 /*提取接口公共部分*/ var ApiConf = { server:"http://localhost:8080/Batte ...