非典型数位dp

先预处理出f[i][j][k]表示从后往前第i位为j时k的个数,然后把答案转换为ans(r)-ans(l-1),用预处理出的f数组dp出f即可(可能也不是dp吧……)

#include<iostream>
#include<cstdio>
using namespace std;
long long l,r,t[25];
struct dp
{
long long a[15];
dp operator + (dp x)
{
dp r;
for(int i=0;i<=9;i++)
r.a[i]=a[i]+x.a[i];
return r;
}
}f[20][20];
dp work(long long x)
{
dp ans;
for(int i=0;i<=9;i++)
ans.a[i]=0;
if(!x)
{
ans.a[0]=1;
return ans;
}
int len=15;
while(t[len]>x)
len--;
for(int i=1;i<len;i++)
for(int j=1;j<=9;j++)
ans=ans+f[i][j];
ans.a[0]++;
int cur=x/t[len];
for(int i=1;i<cur;i++)
ans=ans+f[len][i];
x%=t[len];
ans.a[cur]+=x+1;
for(int i=len-1;i;i--)
{
cur=x/t[i];
for(int j=0;j<cur;j++)
ans=ans+f[i][j];
x%=t[i];
ans.a[cur]+=x+1;
}
return ans;
}
int main()
{
t[1]=1;
for(int i=2;i<=15;i++)
t[i]=t[i-1]*10;
for(int i=0;i<=9;i++)
f[1][i].a[i]=1;
for(int i=2;i<=12;i++)
for(int j=0;j<=9;j++)
for(int k=0;k<=9;k++)
{
f[i][k]=f[i][k]+f[i-1][j];
f[i][k].a[k]+=t[i-1];
}
scanf("%lld%lld",&l,&r);
dp ans1=work(r),ans2=work(l-1);//cout<<"aa";
for(int i=0;i<=9;i++)
printf("%lld ",ans1.a[i]-ans2.a[i]);
return 0;
}

bzoj 1833: [ZJOI2010]count 数字计数【数位dp】的更多相关文章

  1. BZOJ 1833 ZJOI2010 count 数字计数 数位DP

    题目大意:求[a,b]间全部的整数中0~9每一个数字出现了几次 令f[i]为i位数(算前导零)中每一个数出现的次数(一定是同样的,所以仅仅记录一个即可了) 有f[i]=f[i-1]*10+10^(i- ...

  2. 1833: [ZJOI2010]count 数字计数——数位dp

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...

  3. BZOJ 1833: [ZJOI2010]count 数字计数( dp )

    dp(i, j, k)表示共i位, 最高位是j, 数字k出现次数. 预处理出来. 差分答案, 对于0~x的答案, 从低位到高位进行讨论 -------------------------------- ...

  4. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  5. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

  6. [BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】

    题目链接:BZOJ - 1833 题目分析 数位DP .. 用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k . 然后差分询问...Get()中注意一下,如果固定了第 i ...

  7. BZOJ 1833: [ZJOI2010]count 数字计数

    Description 问 \([L,R]\) 中0-9的个数. Sol 数位DP. 预处理好长度为 \(i\), 最高位为 \(j\) 的数位之和. 然后从上往下计算,不要忘记往下走的同时要把高位的 ...

  8. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  9. bzoj 1833 [ZJOI2010]count 数字计数(数位DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1833 [题意] 统计[a,b]区间内各数位出现的次数. [思路] 设f[i][j][k ...

随机推荐

  1. 字符串String对象构造方法的创建和直接赋值的区别

    /* * 通过构造方法创建的字符串对象和直接赋值方式创建的字符串对象有什么区别呢? * 区别是:通过构造方法创建的字符串对象是在堆内存.通过赋值创建的字符串对象是在方法区的常量池 * * == * 基 ...

  2. js高级程序设计第八章BOM(未完成,待续)

    8.1window对象 BOM的核心对象是window,表示浏览器的一个实例. window对象有双重角色,既可以通过就是访问浏览器窗口的接口,又是ECMAscript规定的Global对象   8. ...

  3. CALayer之 customizing timing of an animation

    customizing timing of an animation Timing is an important part of animations, and with Core Animatio ...

  4. UVA 129_ Krypton Factor

    题意: 一个字符串含有两个相邻的重复的子串,则称这个串为容易的串,其他为困难的串,对于给定n,l,求出由前l个字符组成的字典序第n小的困难的串. 分析: 按字典序在字符串末尾增加新的字符,并从当前字符 ...

  5. javabean组件

    javaBean组件引入: javaBean是使用java语言开发的一个可重用的组件,在Jsp开发中可以使用javaBean减少重复代码,使整个JSP代码的开发更简洁. 我们首先创建一个类叫做Stud ...

  6. Strongly connected-HDU4635

    Problem - 4635 http://acm.hdu.edu.cn/showproblem.php?pid=4635 题目大意: n个点,m条边,求最多再加几条边,然后这个图不是强连通 分析: ...

  7. CODEFORCES problem 105A.Transmigration

    题目本身上手并不难,字符串处理+简单的排序.要注意的地方是浮点数的处理. 依据计算机中浮点数的表示原理,在实际编程的过程中即使用一个确定的整数(假设是1)给一个浮点变量赋值 在查看变量时会发现实际存储 ...

  8. P1996||T1282 约瑟夫问题 洛谷||codevs

    https://www.luogu.org/problem/show?pid=1996||http://codevs.cn/problem/1282/ 题目背景 约瑟夫是一个无聊的人!!! 题目描述 ...

  9. 第一个Spring程序(DI的实现)

    一,依赖注入:Dependency Injection(DI)与控制反转(IoC),不同角度但是同一个概念.首先我们理解一点在传统方式中我们使用new的方式来创建一个对象,这会造成对象与被实例化的对象 ...

  10. JDBC的存储过程

    以下内容引用自http://wiki.jikexueyuan.com/project/jdbc/stored-procedure.html: 正如一个Connection对象创建了Statement和 ...