bzoj 4550: 小奇的博弈【博弈论+dp】
首先看出终止状态是全都堆在左边或者右边,然后发现黑的向左白的向右是最优策略(如果不能这样了也就该输了)
然后就不会了
参考 http://www.cnblogs.com/CQzhangyu/p/7707746.html
发现黑白之间的距离一定是不断缩小的,就相当于k堆石子,每次从1~d堆里拿走一些,根据nimk,二进制位下每一位的和都是d+1的倍数则先手必输(可以看成高配的巴什博奕)
然后设f[i][j]为前i位用了j石子,用组合数转移:f[i+1][j]=(f[i+1][j]+f[i][j-(1ll<<i)k(d+1)]c[m/2][(d+1)k])%mod
#include<iostream>
#include<cstdio>
using namespace std;
const long long N=10005,mod=1e9+7;
int n,m,d;
long long f[20][N],c[N][105],ans;
int main()
{
scanf("%d%d%d",&n,&m,&d);
for(int i=0;i<=n;i++)
{
c[i][0]=1;
for(int j=1;j<=i&&j<=m;j++)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
f[0][0]=1;
for(int i=0;i<16;i++)
for(int j=0;j<=n-m;j++)
for(int k=0;(1ll<<i)*(d+1)*k<=j&&(d+1)*k<=m/2;k++)
f[i+1][j]=(f[i+1][j]+f[i][j-(1ll<<i)*k*(d+1)]*c[m/2][(d+1)*k])%mod;
for(int i=0;i<=n-m;i++)
ans=(ans+f[16][i]*c[n-i-m/2][m/2])%mod;
printf("%lld",(c[n][m]-ans+mod)%mod);
return 0;
}
bzoj 4550: 小奇的博弈【博弈论+dp】的更多相关文章
- 【bzoj4550】小奇的博弈 博弈论+dp
题目描述 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色.最左边是白色棋子,最右边 是黑色棋子,相邻的棋子颜色不同. 小奇可以移动白色棋子,提比可以移动黑色的棋子, ...
- 【BZOJ4550】小奇的博弈 博弈论
[BZOJ4550]小奇的博弈 Description 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色.最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...
- BZOJ4550: 小奇的博弈(NIMK博弈& 组合数& DP)
4550: 小奇的博弈 Time Limit: 2 Sec Memory Limit: 256 MBSubmit: 159 Solved: 104[Submit][Status][Discuss] ...
- BZOJ4550 小奇的博弈 【Nimk游戏 + dp + 组合数】
题目 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色.最左边是白色棋子,最右边 是黑色棋子,相邻的棋子颜色不同. 小奇可以移动白色棋子,提比可以移动黑色的棋子,它们每次 ...
- [CSP-S模拟测试]:小奇挖矿2(DP+赛瓦维斯特定理)
题目背景 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿石交易市场,以便为飞船升级无限非概率引擎. 题目描述 现在有$m+1$个星球,从左到右标号为$0$到$n$,小奇最初 ...
- bzoj 4547 小奇的集合
Description 有一个大小为n的可重集S,小奇每次操作可以加入一个数a+b(a,b均属于S),求k次操作后它可获得的S的和的最大 值.(数据保证这个值为非负数) Input 第一行有两个整数n ...
- BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏
题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...
- bzoj 4711 小奇挖矿 —— 树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4711 就是树形DP,然而也想了半天才把转移想清楚: f[x][j][0] 表示 x 去上面 ...
- bzoj 4711 小奇挖矿 ——“承诺”类树形dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4711 对“承诺”有了更深的了解. 向外和向内要区分,所以 f [ i ][ j ] 表示根向 ...
随机推荐
- android项目笔记(一)
1.getInstance:单例模式创建类的实例,getInstance在单例模式(保证一个类仅有一个实例,并提供一个访问它的全局访问点)的类中常见,用来生成唯一的实例,getInstance往往是s ...
- DW 表格与表单
CSS样式表
- 获取DOM父元素和子元素
利用javascript可以遍历DOM树,这篇文章介绍用获取一个DOM元素的所有父节点和获取一个DOM元素的所以子孙节点. 1.获取所有父节点.用递归的方法,用parentNode属性. <!D ...
- XMLHTTPRequest DEMO(发送测试)
对于其中的HTTP状态,我们知道200-299表明访问成功:300-399表明需要客户端 反应来满足请求:400-499和500-599表明客户端和服务器出错:其中常用的如404表示资源没找到,403 ...
- 如何动态地给vSphere虚拟机模板注入信息
在做vSphere自动化安装过程中,遇到这样一个需求:将vCenter Server做成模板,在给用户自动化装好vSphere后, 下载vCenter Server模板并启动虚拟机,然后将vCente ...
- 李洪强经典面试案例33-如何面试 iOS 工程师
如何面试 iOS 工程师 推荐序 私下和很多朋友交流过这个话题,大部分求职者认为,我能做基本的 iOS 开发工作,就达到公司的要求了,殊不知公司招聘员工,更希望的是这个人能够在关键时候能够发挥一般 ...
- 解决gradle多模块依赖在Idea中能运行,gradle build失败的问题。
最近需要初始化一个SpringBoot新项目遇到一个问题就是:项目中有多个子模块,使用gradle依赖管理成功. 项目结构如下: project --module1 --module2我的mo ...
- 李雅普诺夫函数 LyapunovFunction 李雅普诺夫意义下的稳定性
https://zh.wikipedia.org/zh-hans/李亞普諾夫函數 李雅普诺夫函数(Lyapunov function)是用来证明一动力系统或自治微分方程稳定性的函数.其名称来自俄罗斯数 ...
- 使用tencent协议发起临时会话
调用默认浏览器打开链接tencent://message/?uin=QQ即可发起临时会话参数uin为目标QQ Java示例 import java.awt.Desktop; import java.n ...
- html5--6-44信纸设计
html5--6-44信纸设计 实例 <!doctype html> <html> <head> <meta charset="utf-8" ...