BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划

Description

JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号。方便起见,JYY的编号是0号。每个候选人都由一位
编号比他小的候选人Ri推荐。如果Ri=0则说明这个候选人是JYY自己看上的。为了保证团队的和谐,JYY需要保证,
如果招募了候选人i,那么候选人Ri"也一定需要在团队中。当然了,JYY自己总是在团队里的。每一个候选人都有
一个战斗值Pi",也有一个招募费用Si"。JYY希望招募K个候选人(JYY自己不算),组成一个性价比最高的团队。
也就是,这K个被JYY选择的候选人的总战斗值与总招募总费用的比值最大。

Input

输入一行包含两个正整数K和N。
接下来N行,其中第i行包含3个整数Si,Pi,Ri表示候选人i的招募费用,战斗值和推荐人编号。
对于100%的数据满足1≤K≤N≤2500,0<"Si,Pi"≤10^4,0≤Ri<i

Output

输出一行一个实数,表示最佳比值。答案保留三位小数。

Sample Input

1 2
1000 1 0
1 1000 1

Sample Output

0.001


二分答案x,令t[i]=P[i]-x*S[i]。

然后建立源点S,跑个树形背包求f[S][K+1]是否大于0即可。

按子树合并的树形背包复杂度是$O(n^2)$的。

代码:

#include <cstdio>
#include <string.h>
#include <algorithm>
using namespace std;
typedef double f2;
#define N 2550
#define S (n+1)
#define eps 1e-6
#define inf 1000000000
int head[N],to[N<<1],nxt[N<<1],cnt,n,K,A[N],B[N],C[N],siz[N];
f2 t[N],g[N],f[N][N];
inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
void dfs(int x) {
siz[x]=1;int i,j,k; f[x][1]=t[x];
for(k=head[x];k;k=nxt[k]) {
dfs(to[k]);
for(i=1;i<=siz[x]+siz[to[k]];i++) g[i]=f[x][i];
for(i=1;i<=siz[x];i++) if(f[x][i]>-inf) {
for(j=1;j<=siz[to[k]];j++) if(f[to[k]][j]>-inf) {
g[i+j]=max(g[i+j],f[x][i]+f[to[k]][j]);
}
}
for(i=1;i<=siz[x]+siz[to[k]];i++) f[x][i]=g[i];
siz[x]+=siz[to[k]];
}
}
bool check(f2 x) {
int i,j;
for(i=0;i<=n;i++) t[i]=B[i]-x*A[i];
t[S]=0;
for(i=1;i<=S;i++) {
for(j=1;j<=K+1;j++) {
f[i][j]=-inf;
}
}
dfs(S);
return f[S][K+1]>eps;
}
int main() {
//freopen("sales.in","r",stdin);
//freopen("sales.out","w",stdout);
scanf("%d%d",&K,&n);
int i;
f2 sum=0;
for(i=1;i<=n;i++) {
scanf("%d%d%d",&A[i],&B[i],&C[i]);
if(!C[i]) C[i]=S;
add(C[i],i); sum+=A[i];
}
f2 l=0,r=10000;
while(r-l>eps) {
f2 mid=(l+r)/2;
if(check(mid)) l=mid;
else r=mid;
}
printf("%.3f\n",l);
}

BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划的更多相关文章

  1. [JSOI 2016] 最佳团体(树形背包+01分数规划)

    4753: [Jsoi2016]最佳团体 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2003  Solved: 790[Submit][Statu ...

  2. [JSOI2016] 最佳团队 (树形DP+01分数规划)

    Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号. 每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY ...

  3. BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)

    题目链接 \(Description\) 每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大 \(Solution\) 01分数规划,然 ...

  4. 【BZOJ】4753: [Jsoi2016]最佳团体 01分数规划+树上背包

    [题意]n个人,每个人有价值ai和代价bi和一个依赖对象ri<i,选择 i 时 ri 也必须选择(ri=0时不依赖),求选择k个人使得Σai/Σbi最大.n<=2500,ai,bi< ...

  5. bzoj 4753: [Jsoi2016]最佳团体【01分数规划+二分+树上背包】

    01分数规划,二分答案然后把判别式变成Σp[i]-Σs[i]*mid>=0,然后树上背包判断,设f[i][j]为在i点子树里选j个的最大收益,随便背包一下就好 最丧病的是神卡常--转移的时候要另 ...

  6. BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划

    BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...

  7. BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)

    BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...

  8. [JSOI2016]最佳团体 DFS序/树形DP

    题目 洛谷 P4322 [JSOI2016]最佳团体 Description 茜茜的舞蹈团队一共有\(N\)名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,茜茜的编号是\(0\)号.每个候 ...

  9. [JSOI2016]最佳团体

    嘟嘟嘟 01分数规划+树形背包. 然后就没了. 结果我调了半天,原因还是树形背包不熟练. 我是用dfs序求的,转化的时候,是dp[i][j]转化到dp[i + 1][j + 1]或dp[i +siz[ ...

随机推荐

  1. 使用TensorRT加速yolo3

    一.TensorRT支持的模型: TensorRT 直接支持的model有ONNX.Caffe.TensorFlow,其他常见model建议先转化成ONNX.总结如下: 1 ONNX(.onnx) 2 ...

  2. Samba 学习笔记

    这个网站不错.https://www.ibm.com/developerworks/cn/linux/l-lpic3-311-1/

  3. python爬虫入门02:教你通过 Fiddler 进行手机抓包

    哟~哟~哟~ hi起来 everybody 今天要说说怎么在我们的手机抓包 通过 python爬虫入门01:教你在Chrome浏览器轻松抓包 我们知道了 HTTP 的请求方式 以及在 Chrome 中 ...

  4. 83-MACD 移动平均汇总/分离指标.(2015.7.3)

    MACD 移动平均汇总/分离指标 ~计算: · EMA(12,t)=EMA(12,t-1) * 11/13 + Close * 2/13 · EMA(26,t)=EMA(26,t-1) * 25/27 ...

  5. popup介绍

    一.作用 用于使浏览器自动生成弹窗 二.示例 1.新建Django项目,新建APP:app01, 项目根目录下新建文件夹static 2.静态文件配置,在settings.py中配置static: 3 ...

  6. 嵌入式linux启动信息完全注释

    嵌入式linux启动信息完全注释 from:http://www.embedlinux.cn/ShowPost.asp?ThreadID=377 摘要 我们在这里讨论的是对嵌入式linux系统的启动过 ...

  7. java 几种拼接字符串的效率问题

    拼接字符串,大致有3个class可以用,他们是String, StringBuffer,StringBuilder, StringBuilder是1.5中来代替StringBuffer的.检验方法如下 ...

  8. 九度oj 题目1062:分段函数

    题目1062:分段函数 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3874 解决:2278 题目描述: 编写程序,计算下列分段函数y=f(x)的值.y=-x+2.5; 0<=x& ...

  9. 全文搜索(AC-1)-互联网信息过载问题

    什么是信息过载? 信息检索技术是什么? 信息过滤技术是什么?

  10. zoj4710暴力

    #include<stdio.h> #include<string.h> #define N 110 int map[N][N]; int main() { int n,m,k ...