ZS the Coder has recently found an interesting concept called the Birthday Paradox. It states that given a random set of 23 people, there is around 50% chance that some two of them share the same birthday. ZS the Coder finds this very interesting, and decides to test this with the inhabitants of Udayland.

In Udayland, there are 2n days in a year. ZS the Coder wants to interview k people from Udayland, each of them has birthday in one of 2n days (each day with equal probability). He is interested in the probability of at least two of them have the birthday at the same day.

ZS the Coder knows that the answer can be written as an irreducible fraction . He wants to find the values of A and B (he does not like to deal with floating point numbers). Can you help him?

Input

The first and only line of the input contains two integers n and k (1 ≤ n ≤ 1018, 2 ≤ k ≤ 1018), meaning that there are 2n days in a year and that ZS the Coder wants to interview exactly k people.

Output

If the probability of at least two k people having the same birthday in 2n days long year equals (A ≥ 0, B ≥ 1, ), print the A and B in a single line.

Since these numbers may be too large, print them modulo 106 + 3. Note that A and B must be coprime before their remainders modulo 106 + 3 are taken.

Examples
Input
3 2
Output
1 8
Input
1 3
Output
1 1
Input
4 3
Output
23 128
Note

In the first sample case, there are 23 = 8 days in Udayland. The probability that 2 people have the same birthday among 2 people is clearly , so A = 1, B = 8.

In the second sample case, there are only 21 = 2 days in Udayland, but there are 3 people, so it is guaranteed that two of them have the same birthday. Thus, the probability is 1 and A = B = 1.

想要知道答案是啥还是很容易的,用高中知识即可知道1 - {  A(2^n,k) / 2^(nk)  } 即是所求,A(a,b)是排列数。

问题是要先化简再上下同时取模

可以先证明如果有大数A、B,假设(A%mod)/(B%mod)==p/q,那么1-A/B=(B-A)/B=(q-p)/q。(在模mod意义下)

所以只要知道A(2^n,k)/2^(nk),就能知道答案了

先化简。

分式下面只有2,所以gcd=2^t,t不知道,但是显然t是由上面A(2^n,k)决定。

考虑(2^n)(2^n-1)...(2^n-k+1)有多少个因子2。如果把2^n单独考虑,剩下(2^n-1)...(2^n-k+1)的2的因子数跟1~k-1的2的因子数一样多。因为任取个(2^n-s),它能和s对应

所以因子数就是n+(k-1)/2+(k-1)/4+...+(k-1)/2^p,除到(k-1)/2^p=0为止

得到了gcd=2^t的t之后,只要上下同时乘(2关于mod的逆元)乘t次,就完成了化简。

然后注意到当k>=mod时,(2^n)(2^n-1)(2^n-mod+1)%mod==0,由鸽巢原理这是显然的。

所以当k<mod,A(2^n,k)%mod暴力算,k>=mod,A(2^n,k)%mod==0。

而2^(nk)%mod是容易算的。

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7ffffff
#define pa pair<int,int>
#define mkp(a,b) make_pair(a,b)
#define pi 3.1415926535897932384626433832795028841971
#define mod 1000003
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
LL n,k;
LL rev_2;
LL bit[];
inline LL quickpow(LL a,LL b,LL MOD)
{
LL s=;
while (b)
{
if (b&)s=(s*a)%MOD;
a=(a*a)%MOD;
b>>=;
}
return s;
}
int main()
{
rev_2=quickpow(,mod-,mod);bit[]=;for (int i=;i<;i++)bit[i]=bit[i-]<<;
n=read();k=read();
if (n<=&&k>bit[n]){puts("1 1");return ;}
if (k==){puts("0 1");return ;}
LL mx=quickpow(,n,mod),now=mx;
LL ans1=,ans2=;
LL te=k-,sum=n;
while (te)
{
sum+=te/;
te>>=;
}
LL sv=k;
for (LL i=;i<=min(sv,(LL)mod);i++)
{
k--;
ans2=(ans2*mx)%mod;
ans1=(ans1*now)%mod;
now--;if (!now)now+=mod;
}
while (k%(mod-)!=)ans2=(ans2*mx)%mod,k--;
ans1=(ans1*quickpow(rev_2,sum,mod))%mod;
ans2=(ans2*quickpow(rev_2,sum,mod))%mod;
printf("%lld %lld\n",(ans2-ans1+mod)%mod,ans2);
//ans=1-{ (2^n*(2^n-1)*(2^n-2)*...*(2^n-k+1))/(2^n)^k }
}

cf 711E

cf711E ZS and The Birthday Paradox的更多相关文章

  1. CF369E. ZS and The Birthday Paradox

    /* cf369E. ZS and The Birthday Paradox http://codeforces.com/contest/711/problem/E 抽屉原理+快速幂+逆元+勒让德定理 ...

  2. codeforces 711E E. ZS and The Birthday Paradox(数学+概率)

    题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...

  3. ZS and The Birthday Paradox

    ZS and The Birthday Paradox 题目链接:http://codeforces.com/contest/711/problem/E 数学题(Legendre's formula) ...

  4. Codeforces 711E ZS and The Birthday Paradox 数学

    ZS and The Birthday Paradox 感觉里面有好多技巧.. #include<bits/stdc++.h> #define LL long long #define f ...

  5. Codeforces Round #369 (Div. 2) E. ZS and The Birthday Paradox 数学

    E. ZS and The Birthday Paradox 题目连接: http://www.codeforces.com/contest/711/problem/E Description ZS ...

  6. 【Codeforces711E】ZS and The Birthday Paradox [数论]

    ZS and The Birthday Paradox Time Limit: 20 Sec  Memory Limit: 512 MB Description Input Output Sample ...

  7. Codeforces 711E ZS and The Birthday Paradox

    传送门 time limit per test 2 seconds memory limit per test 256 megabytes input standard input output st ...

  8. 【28.57%】【codeforces 711E】ZS and The Birthday Paradox

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  9. codeforces 711E. ZS and The Birthday Paradox 概率

    已知一年365天找23个人有2个人在同一天生日的概率 > 50% 给出n,k ,表示现在一年有2^n天,找k个人,有2个人在同一天生日的概率,求出来的概率是a/b形式,化到最简形式,由于a,b可 ...

随机推荐

  1. selenium-Python之进行文件的上传和下载文件

    在利用Selenium进行批量上传文件时,遇到如下的Windows窗口进行上传.下载操作时,可以通过pywinauto进行操作.上传窗口如下 使用pywinauto,需知Windows窗口控件的cla ...

  2. COGS 2280. [HZOI 2015]树白黑

    ★★   输入文件:B_Tree.in   输出文件:B_Tree.out   简单对比时间限制:2 s   内存限制:512 MB [题目描述] 给定一棵有根树,树根为1,一开始这棵树所有节点均为白 ...

  3. 如何解决源码安装软件中make时一直重复打印configure信息

    在通过源码安装软件时,会出现执行./configure后再make时总是重复打印configure的信息,无法进入下一阶段的安装. 主要原因是系统当前的时间与实际时间不一致,特别是在虚拟机上经常会出现 ...

  4. HDU 6166 Senior Pan(多校第九场 二进制分组最短路)

    题意:给出n个点和m条有向边(有向边!!!!我还以为是无向查了半天),然后给出K个点,问这k个点中最近的两点的距离 思路:比赛时以为有询问,就直接丢了,然后这题感觉思路很棒,加入把所有点分成起点和终点 ...

  5. flex常用属性

    <1>align-items: 垂直方向的对齐方式 align-items: stretch(拉伸,布满父容器) | center(垂直居中) | flex-start(上对齐) | fl ...

  6. Java数据结构面试题

    1.栈和队列的共同特点是(只允许在端点处插入和删除元素) 4.栈通常采用的两种存储结构是(线性存储结构和链表存储结构) 5.下列关于栈的叙述正确的是(D)      A.栈是非线性结构B.栈是一种树状 ...

  7. python暴力破解wifi密码程序

    import time # 破解wifi库 import pywifi from pywifi import const class PoJie(object): def __init__(self, ...

  8. 洛谷 P1514 引水入城

    这次不说闲话了,直接怼题 这道题用bfs其实并不难想,但比较困难的是怎么解决满足要求时输出蓄水厂的数量.其实就像其他题解说的那样,我们可以用bfs将它转化成一个区间覆盖问题,然后再进行贪心. 首先枚举 ...

  9. HTML5拖放(drag和drog)

    拖放(drag和drog)是HTML5的标准的组成部分,也是种常见的特性,意义为抓起一个元素放入到另外的一个位置,在HTML5中任何元素都可以被拖放,前题是要相关进行设置. 1.设置元素为可拖放,也就 ...

  10. 【模板】任意模数NTT

    题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F ...