【线性代数】5-2:置换和余因子(Permutations and Cofactors)
title: 【线性代数】5-2:置换和余因子(Permutations and Cofactors)
categories:
- Mathematic
- Linear Algebra
keywords: - Determinants
- ‘Pivot Formula’
- ‘Big Formula’
- ‘Cofactors Formula’
- Cofactors
- Permutations
toc: true
date: 2017-11-03 09:50:36
Abstract: 行列式的几种求法,以及相关的衍生问题
Keywords: Determinants,‘Pivot Formula’,‘Big Formula’,‘Cofactors Formula’,Cofactors,Permutations
开篇废话
今天写的是行列式的三种计算方法,瞬间想到了孔乙己的茴香豆的四种写法,一个多少有点文化的人(被老师们解读为迂腐)却被一些没什么文化的人嘲笑挖苦;如果孔乙己是个那个时代的悲剧,那我们自己会不会成为这个时代的悲剧呢?读书无用论,某首富的“北大,清华大不如胆大”论,如果思维继续,结果最后肯定是喜闻乐见
The Pivot Formula
Pivot的方式求行列式的值,Pro. Stang说这是matlab的做法,也就是计算机求行列式一般通过消元后得到Pivot,然后将所有Pivots相乘,得到行列式的值,这里有个主意的地方,我们反复强调,如果不是满rank的话,Pivot必然在某些行或者列里面不存在,那么这个矩阵是奇异矩阵,行列式值为0。
能够支持Pivot的乘积等于行列式的原因是上文关于properties 中Rule5 是消元的主要过程,rule5 告诉我们消元前后行列式的值不变,但是有的时候我们不光要消元还要进行行交换,这个是随机次数的,所以行列式的值等于Pivot乘积的前面正负号不明确,故:
det(A)=±p11p22…pnn
det(A)=\pm p_{11}p_{22}\dots p_{nn}
det(A)=±p11p22…pnn
从另一个角度讲,如果把消元过程用矩阵方式表达 PA=LUPA=LUPA=LU LU分解的矩阵形式,通过rule8 ,就能知道
det(P)det(A)=det(L)det(U)det(P)=±1det(L)=1det(A)=±det(U)
det(P)det(A)=det(L)det(U)\\
det(P)=\pm 1\\
det(L)=1\\
det(A)=\pm det(U)
det(P)det(A)=det(L)det(U)det(P)=±1det(L)=1det(A)=±det(U)
这样的话,U的对角线是由Pivot组成的,这个就是Pivot Formula的另一个切入点,都能证明行列式的pivot formula的正确性。
Pivot过程就是消元的过程,通过消元,得到行列式的值。
通过相乘的过程我们还能得到一个子矩阵的行列式,比如矩阵AAA的左上角的一块小的矩阵 A′A'A′ 他的行列式等于这个子矩阵覆盖的pivot的值(没有行变换)
det(A′)=p11p22…pkkif det(A′′)=p11p22…pk−1k−1pkk=det(A′)det(A′′)
det(A')=p_{11}p_{22}\dots p_{kk} \\
if \, det(A'')=p_{11}p_{22}\dots p_{k-1k-1}\\
p_{kk}=\frac{det(A')}{det(A'')}
det(A′)=p11p22…pkkifdet(A′′)=p11p22…pk−1k−1pkk=det(A′′)det(A′)
The big Formula
本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-5-2转载请标明出处
【线性代数】5-2:置换和余因子(Permutations and Cofactors)的更多相关文章
- Pascal Hexagrammum Mysticum 的深度探索
PASCAL . Hexagrammum Mysticum . (六角迷魂图) . 的深度探索 . 英中对比.英文蓝色,译文黑色,译者补充说明用紫红色 (已校完,但尚未定稿,想再整理并补充内容 ...
- POJ2369 Permutations(置换的周期)
链接:http://poj.org/problem?id=2369 Permutations Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- Codeforces 987E Petr and Permutations(数组的置换与复原 、结论)
题目连接: Petr and Permutations 题意:给出一个1到n的序列,Petr打乱了3n次,Um_nik打乱了7n+1次,现在给出被打乱后的序列,求是谁打乱的. 题解:因为给出了一个3* ...
- 【UVA 11077】 Find the Permutations (置换+第一类斯特林数)
Find the Permutations Sorting is one of the most used operations in real life, where Computer Scienc ...
- UVA - 11077 Find the Permutations (置换)
Sorting is one of the most usedoperations in real life, where Computer Science comes into act. It is ...
- UVa 11077 Find the Permutations(置换+递推)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35431 [思路] 置换+递推 将一个排列看作一个置换,分解为k个循 ...
- poj 2369 Permutations 置换
题目链接 给一个数列, 求这个数列置换成1, 2, 3....n需要多少次. 就是里面所有小的置换的长度的lcm. #include <iostream> #include <vec ...
- poj 2369 Permutations (置换入门)
题意:给你一堆无序的数列p,求k,使得p^k=p 思路:利用置换的性质,先找出所有的循环,然后循环中元素的个数的lcm就是答案 代码: #include <cstdio> #include ...
- 【CF736D】Permutations 线性代数+高斯消元
[CF736D]Permutations 题意:有一个未知长度为n的排列和m个条件,第i个条件$(a_i,b_i)$表示第$a_i$个位置上的数可以为$b_i$.保证最终合法的排列的个数是奇数.现在有 ...
随机推荐
- 2019杭电多校一 C. Milk (dp)
大意: $n*m$棋盘, 初始位置$(1,1)$, 横坐标为$\frac{m+1}{2}$时可以向下走, 否则只能左右走, 每走一步花费$1$秒. 有$k$管奶, 第$i$罐位置$(r_i,c_i)$ ...
- django静态文件配置和使用
一.首先需要了解的知识点是: 1.出于对效率和安全的考虑,django管理静态文件的功能仅限于在开发阶段的debug模式下使用,且需要在配置文件的INSTALLED_APPS中加入django.con ...
- Task执行多次
项目中,曾经出现过启动时数据库连接数瞬间增大,当时并没有注意该问题. 后期,由于Task任务多次执行,才着手查看这个问题,经排查,由于tomcat中webapp配置多次,导致webapp被扫描多次(配 ...
- oracle查询十分钟之前的数据
select * from TABLE as of timestamp sysdate - 10/1440 t WHERE ColName='1111'; TABLE:表名 WHERE:查询子句 sy ...
- nodejs连接mysql数据库,报错Client does not support authentication protocol requested by server的解决方法
最近想要尝试nodejs连接本地数据库,往全栈方向做一个小小的尝试,于是下载了一个 MySQL8.0,发现Navicat连接不上,结果就下载了mysql自身的Workbench,继续使用. 然而,难受 ...
- cli create ssl certkey
cli create ssl certkey ############################### # 创建CA密钥 create ssl rsakey bwsrv-root.key -ex ...
- web pack备忘
全局安装:npm install webpack -g npm i module_name -S = > npm install module_name --save 写入到 dependenc ...
- Windows下计算md5值
目录 Windows下计算md5值 1.linux 下计算md5值 2.Windows下计算md5值 Windows下计算md5值 1.linux 下计算md5值 [root@master yl]# ...
- You're currently running Fcitx with GUI 错误解决 Fcitx
在英文版ubuntu配置输入法时,点击 Configure Current Input Method 会报以下的错误: You’re currently running Fcitx with GUI, ...
- (转载)关于FLASH寿命的读写方法
NOR(或非)和NAND(与非)是市场上两种主要的Flash闪存,sNORFLASH 和CPU之间不需要其他电路控制,NOR flash可以芯片内执行程序,而NAND FLASH 和CPU 的接口必须 ...
