直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗?

放。。。怕不是数论白学了$qwq$


思路:二分+容斥

提交:两次(康了题解)

题解:

首先答案满足二分性质(递增),然后就是如何快速$ck()$

首先观察到,$\lfloor \frac{n}{i^2} \rfloor$是$i^2$筛出来的完全平方数(和其倍数)的个数,但是显然这么筛会筛重一些数。

于是:容斥叭$qwq$

考虑如何配系数:所有数-被一个素因子的平方筛掉的+被两个素因子的平方筛掉的-被三个素因子的平方筛掉的+。。。

奇负偶正?

这不是$\mu$吗?

好的,筛出$\mu$,$sqrt(2*k)$(然鹅我也不知道为什么$2*k$是上界)的;然后二分答案。

$O(T*logn*\sqrt{n})$

#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;
#define ull unsigned long long
#define ll long long
#define R register ll
#define pause (for(R i=1;i<=10000000000;++i))
#define In freopen("NOIPAK++.in","r",stdin)
#define Out freopen("out.out","w",stdout)
namespace Fread {
static char B[<<],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
if(ch==EOF) return EOF; do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=||ch>=);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
} using Fread::g; using Fread::gs; namespace Luitaryi {
const int N=;
int mu[N],pri[N/],cnt,T,k;
bool vis[N];
inline void PRE() { mu[]=;
for(R i=;i<=N-;++i) {
if(!vis[i]) pri[++cnt]=i,mu[i]=-;
for(R j=;j<=cnt&&i*pri[j]<=N-;++j) {
vis[i*pri[j]]=true;
if(i%pri[j]==) break;
mu[i*pri[j]]=-mu[i];
}
}
}
inline bool ck(int x) { R ret=;
for(R i=,lim=sqrt(x);i<=lim;++i) ret+=mu[i]*(x/(i*i));
return ret>=k;
}
inline void main() { PRE();
T=g(); while(T--) {
k=g();
R l=,r=k<<;
while(l<r) {
R md=l+r>>;
if(ck(md)) r=md;
else l=md+;
} printf("%lld\n",l);
}
}
}
signed main() {
Luitaryi::main();
}

2019.07.17

BZOJ 2440 [中山市选2011]完全平方数 二分+容斥的更多相关文章

  1. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  2. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  3. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  4. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  5. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  6. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  7. BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...

  8. bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】

    二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数 #include<iostream> #include<cstdio> #include&l ...

  9. BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数

    $\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \lef ...

随机推荐

  1. Photon Server初识(三) ---ORM映射改进

    一:新建一些管理类, 二.实现每个管理类 (1)NHibernateHelper.cs 类,管理数据库连接 using NHibernate; using NHibernate.Cfg; namesp ...

  2. vue—组件基础了解

    什么是组件? 组件是vue中的一个可复用实例,所以new Vue()是vue中最大的那个组件,根组件,有名字,使用的时候以单标签或双标签使用 vm = newVue() 是最大的组件,具有很多实用性的 ...

  3. Python基础总结之第六天开始【先简单认识一次函数】(新手可相互督促)

    午休后,看看电视,在回顾下新的知识----函数.相信很多小伙伴在学习python后 ,学到函数就会有一部分人放弃了,从努力到放弃(内容过于真实) 好希望我也能有很多粉丝,hhh.... 函数: 什么是 ...

  4. hdu 6069 Counting divisors 公式+区间筛

    比赛的时候把公式扣出来了,,但是没有想到用筛法算公因子,,默默学习一下.. 题解:设n=p1^(c1)p2^{c2}...pm^{cm},n=p​1^​c​1*​​​​p​2​^c​2​​​​...p ...

  5. vue中$router 与 $route区别

    vue-router中经常会操作的两个对象\(route和\)router两个. 1.$route对象 $route对象表示当前的路由信息,包含了当前 URL 解析得到的信息.包含当前的路径,参数,q ...

  6. WINAPI与CALLBACK

    #define WINAPI __stdcall #define CALLBACK __stdcall   都是__stdcall,无本质区别. CALLBACK只是为了告诉我们这是一个回调函数.

  7. linux - 卸载python

    2019年10月15日12:05:42 [root@spider1 bin]# rpm -qa|grep python|xargs rpm -ev --allmatches --nodeps ##强制 ...

  8. JS经典算法

     寻找500以内能被5和7整除的数字:for(var num=1;num<=500&&num++;) if(num%7==0&&num%5==0){ consol ...

  9. docker第三篇 镜像管理基础

    docker 工作原理: 常用的命令docker run .create .start... 都是客户端命令 Docker Daemon 接收到客户端传过来的命令以后 docker daemon会根据 ...

  10. SpringCloud之Hystrix容错保护原理及配置

    1 什么是灾难性雪崩效应? 如下图的过程所示,灾难性雪崩形成原因就大致如此: 造成灾难性雪崩效应的原因,可以简单归结为下述三种: 服务提供者不可用.如:硬件故障.程序BUG.缓存击穿.并发请求量过大等 ...