BZOJ2140 稳定婚姻[强连通分量]
发现如果$B_i$和$G_j$配对,那么$B_j$又要找一个$G_k$配对,$B_k$又要找一个$G_l$配对,一直到某一个$B_x$和$G_i$配对上为止,才是不稳定的。
暴力是二分图匹配、匈牙利算法(据说可过)。仔细观察,将配对关系和潜在关系全连边,不稳定的结果则是一个环。
但是不能直接就这样找。因为无向的话,并不能保证$B_i$和$G_j$配对后就一定从$G_j$走向$B_j$。所以为了保证走向正确,需要定一下向。
将所有$G$点(糟糕的名称)连边指向他对应的配偶$B$点,然后所有$B$点将自己有的潜在关系连边指向$G$点。这样,每个$B$只有一个入度(从原来配对的$G$过来),然后再重新走向一个新的$G$点......
是不是超有道理的。。。所以每对点在不在一个简单环上,换言之,因为两点间连了一条边,只要看这条边在不在一个SCC上(边在SCC上和在简单环上是等价的,不过但两点在SCC上和在简单环上不一定等价)即可。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<map>
#define mst(x) memset(x,0,sizeof x)
#define dbg(x) cerr << #x << " = " << x <<endl
#define dbg2(x,y) cerr<< #x <<" = "<< x <<" "<< #y <<" = "<< y <<endl
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=1e5+,base=;
struct thxorz{int to,nxt;}G[N];
char s[];
int Head[N],frm[N],tot;
int n,m,k;
inline void Addedge(int x,int y){G[++tot].to=y,G[tot].nxt=Head[x],Head[x]=tot;frm[tot]=x;}
map<ull,int> mp;
inline int Read(){
scanf("%s",s+);int len=strlen(s+);ull ha=;
for(register int i=;i<=len;++i)ha=ha*base+s[i]-'A'+;
if(mp.find(ha)==mp.end())mp[ha]=++n;
return mp[ha];
}
#define y G[j].to
int dfn[N],low[N],stk[N],instk[N],Top,cnt,bel[N];
void tarjan(int x){
dfn[x]=low[x]=++cnt,stk[++Top]=x,instk[x]=;
for(register int j=Head[x];j;j=G[j].nxt){
if(!dfn[y])tarjan(y),MIN(low[x],low[y]);
else if(instk[y])MIN(low[x],dfn[y]);
}
if(dfn[x]==low[x]){
int tmp;
do instk[tmp=stk[Top--]]=,bel[tmp]=x;while(tmp^x);
}
}
#undef y
int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
read(k);
for(register int i=,x,y;i<=k;++i)x=Read(),y=Read(),Addedge(x,y);
read(m);
for(register int i=,x,y;i<=m;++i)x=Read(),y=Read(),Addedge(y,x);
for(register int i=;i<=n;++i)if(!dfn[i])tarjan(i);
for(register int i=,x,y;i<=k;++i){
x=frm[i],y=G[i].to;//dbg2(x,y);
puts(bel[x]^bel[y]?"Safe":"Unsafe");
}
return ;
}
总结:一些匹配关系,可以转化为有向图,或者对图定向来完成转化,然后使用tarjan找SCC处理环问题。
BZOJ2140 稳定婚姻[强连通分量]的更多相关文章
- BZOJ2140: 稳定婚姻
题解: 题意就是求二分图的必须边. 我们有结论: 在残量网络上跑tarjan,对于一条边(u,v) 如果该边满流||scc[u]==scc[v],那么该边是可行边. 因为如果scc[u]==scc[v ...
- BZOJ2140: 稳定婚姻(tarjan解决稳定婚姻问题)
2140: 稳定婚姻 Time Limit: 2 Sec Memory Limit: 259 MBSubmit: 1321 Solved: 652[Submit][Status][Discuss] ...
- BZOJ_2140_稳定婚姻_强连通分量
BZOJ_2140_稳定婚姻_强连通分量 Description 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚 姻问题的专家认为,是与简化离 ...
- 【bzoj2140】: 稳定婚姻 图论-tarjan
[bzoj2140]: 稳定婚姻 哎..都是模板题.. 一眼看过去 哇 二分图哎 然后发现好像并不能匈牙利算法 自己xjb画两张图,发现二分图左向右连配偶的边,然后右向左连交往过的边 然后如果Bi G ...
- 【BZOJ2140】稳定婚姻 Tarjan
[BZOJ2140]稳定婚姻 Description 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. ...
- 洛谷 P1407 [国家集训队]稳定婚姻
洛谷 这个题面很有意思,像我这样的菜鸡,完全不需考虑婚姻的稳定 性 问题. tarjan裸题,直接讲算法吧: 原配夫妻之间分别连一条边,小情人之间反向连边. 这时候我们会发现一个性质,如果婚姻稳定,那 ...
- 稳定婚姻(tarjan)
传送门 这道题一开始可能以为是二分图匹配……?不过后来发现和二分图没啥大关系. 简单分析之后发现,把夫妻之间连边(男性向女性连边),之后再将每对曾经是情侣的人连边(女性向男性连边),当然以上的方向可以 ...
- [Luogu] P1407 [国家集训队]稳定婚姻
题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的姗姗和男友谈恋爱半年就结婚,结婚不到 ...
- 2140: 稳定婚姻 - BZOJ
Description 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的姗姗和男友谈恋爱半年就 ...
随机推荐
- 多路径IO
多路径IO(MPIO)是一个微软架构,通过在存储设备和windows操作系统之间提供一个备用数据路径,来减轻主机总线适配器(HBA)故障的影响,MPIO能够支持多达32个备用路径,来增加Windows ...
- 关于HTTP返回码
301与302区别: 301 重定向 三种主流搜索引擎(Google, Bing, Yahoo)对待301都是一样的.它们忽略原始链接然后把重定向后的新链接加入索引.例如:如果用301把 http:/ ...
- 浅谈 JDBC 中 CreateStatement 和 PrepareStatement 的区别与优劣
先说下这俩到底是干啥的吧.其实这俩干的活儿都一样,就是创建了一个对象然后去通过对象调用executeQuery方法来执行sql语句.说是CreateStatement和PrepareStatement ...
- 编写shell脚本实现对虚拟机cpu、内存、磁盘监控机制
一.安装Vmware,并通过镜像安装centos7. 二.安装xshell(可以不装,可以直接在虚拟机中直接进行以下步骤) 三.安装mail 一般Linux发送报警邮件通过本地邮箱或外部邮箱服务器,这 ...
- sshpass ssh登录时自动输入密码
安装 直接安装 sudo apt-get install sshpass 源代码安装 wget http://sourceforge.net/projects/sshpass/files/sshpas ...
- 网络流基础&网络流24题
网络最大流 dinic+当前弧优化. const int N=10007,M=100007,inf=1e9; int s,t,head[N],ver[M],edge[M],Next[M],tot=1, ...
- 计算机网络(TCP/IP)
概述:网络协议通常分不同的层次进行开发,每一层分别不同的通信功能.TCP/IP通常分为4层协议系统. 1.链路层,有时也称为数据链路层或者网络接口层,通常包括操作系统中的设备驱动程序和计算机中对应的网 ...
- 适合新手的160个creakme(二)
先跑一下,然后找出关键字符串 关键字符串是You Get Wrong和Try Again,不过IDA好像识别不出来这个字符串,在Ollydbg中右键Search For,寻找所有字符串,可以找到这些字 ...
- 16.screen相关
screen -S yourname -> 新建一个叫yourname的sessionscreen -ls -> 列出当前所有的sessionscreen -r yourname -> ...
- Django Rest Framework 安装
1. 环境要求 Python (3.5, 3.6, 3.7): 查看 python版本:python -V Django (1.11, 2.0, 2.1, 2.2) 查看django版本:pip li ...