发现如果$B_i$和$G_j$配对,那么$B_j$又要找一个$G_k$配对,$B_k$又要找一个$G_l$配对,一直到某一个$B_x$和$G_i$配对上为止,才是不稳定的。

暴力是二分图匹配、匈牙利算法(据说可过)。仔细观察,将配对关系和潜在关系全连边,不稳定的结果则是一个环。

但是不能直接就这样找。因为无向的话,并不能保证$B_i$和$G_j$配对后就一定从$G_j$走向$B_j$。所以为了保证走向正确,需要定一下向。

将所有$G$点(糟糕的名称)连边指向他对应的配偶$B$点,然后所有$B$点将自己有的潜在关系连边指向$G$点。这样,每个$B$只有一个入度(从原来配对的$G$过来),然后再重新走向一个新的$G$点......

是不是超有道理的。。。所以每对点在不在一个简单环上,换言之,因为两点间连了一条边,只要看这条边在不在一个SCC上(边在SCC上和在简单环上是等价的,不过但两点在SCC上和在简单环上不一定等价)即可。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<map>
#define mst(x) memset(x,0,sizeof x)
#define dbg(x) cerr << #x << " = " << x <<endl
#define dbg2(x,y) cerr<< #x <<" = "<< x <<" "<< #y <<" = "<< y <<endl
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=1e5+,base=;
struct thxorz{int to,nxt;}G[N];
char s[];
int Head[N],frm[N],tot;
int n,m,k;
inline void Addedge(int x,int y){G[++tot].to=y,G[tot].nxt=Head[x],Head[x]=tot;frm[tot]=x;}
map<ull,int> mp;
inline int Read(){
scanf("%s",s+);int len=strlen(s+);ull ha=;
for(register int i=;i<=len;++i)ha=ha*base+s[i]-'A'+;
if(mp.find(ha)==mp.end())mp[ha]=++n;
return mp[ha];
}
#define y G[j].to
int dfn[N],low[N],stk[N],instk[N],Top,cnt,bel[N];
void tarjan(int x){
dfn[x]=low[x]=++cnt,stk[++Top]=x,instk[x]=;
for(register int j=Head[x];j;j=G[j].nxt){
if(!dfn[y])tarjan(y),MIN(low[x],low[y]);
else if(instk[y])MIN(low[x],dfn[y]);
}
if(dfn[x]==low[x]){
int tmp;
do instk[tmp=stk[Top--]]=,bel[tmp]=x;while(tmp^x);
}
}
#undef y
int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
read(k);
for(register int i=,x,y;i<=k;++i)x=Read(),y=Read(),Addedge(x,y);
read(m);
for(register int i=,x,y;i<=m;++i)x=Read(),y=Read(),Addedge(y,x);
for(register int i=;i<=n;++i)if(!dfn[i])tarjan(i);
for(register int i=,x,y;i<=k;++i){
x=frm[i],y=G[i].to;//dbg2(x,y);
puts(bel[x]^bel[y]?"Safe":"Unsafe");
}
return ;
}

总结:一些匹配关系,可以转化为有向图,或者对图定向来完成转化,然后使用tarjan找SCC处理环问题。

BZOJ2140 稳定婚姻[强连通分量]的更多相关文章

  1. BZOJ2140: 稳定婚姻

    题解: 题意就是求二分图的必须边. 我们有结论: 在残量网络上跑tarjan,对于一条边(u,v) 如果该边满流||scc[u]==scc[v],那么该边是可行边. 因为如果scc[u]==scc[v ...

  2. BZOJ2140: 稳定婚姻(tarjan解决稳定婚姻问题)

    2140: 稳定婚姻 Time Limit: 2 Sec  Memory Limit: 259 MBSubmit: 1321  Solved: 652[Submit][Status][Discuss] ...

  3. BZOJ_2140_稳定婚姻_强连通分量

    BZOJ_2140_稳定婚姻_强连通分量 Description 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚 姻问题的专家认为,是与简化离 ...

  4. 【bzoj2140】: 稳定婚姻 图论-tarjan

    [bzoj2140]: 稳定婚姻 哎..都是模板题.. 一眼看过去 哇 二分图哎 然后发现好像并不能匈牙利算法 自己xjb画两张图,发现二分图左向右连配偶的边,然后右向左连交往过的边 然后如果Bi G ...

  5. 【BZOJ2140】稳定婚姻 Tarjan

    [BZOJ2140]稳定婚姻 Description 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. ...

  6. 洛谷 P1407 [国家集训队]稳定婚姻

    洛谷 这个题面很有意思,像我这样的菜鸡,完全不需考虑婚姻的稳定 性 问题. tarjan裸题,直接讲算法吧: 原配夫妻之间分别连一条边,小情人之间反向连边. 这时候我们会发现一个性质,如果婚姻稳定,那 ...

  7. 稳定婚姻(tarjan)

    传送门 这道题一开始可能以为是二分图匹配……?不过后来发现和二分图没啥大关系. 简单分析之后发现,把夫妻之间连边(男性向女性连边),之后再将每对曾经是情侣的人连边(女性向男性连边),当然以上的方向可以 ...

  8. [Luogu] P1407 [国家集训队]稳定婚姻

    题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的姗姗和男友谈恋爱半年就结婚,结婚不到 ...

  9. 2140: 稳定婚姻 - BZOJ

    Description 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的姗姗和男友谈恋爱半年就 ...

随机推荐

  1. 最新 东软java校招面经 (含整理过的面试题大全)

    从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.东软等10家互联网公司的校招Offer,因为某些自身原因最终选择了东软.6.7月主要是做系统复习.项目复盘.LeetCode ...

  2. STM32 MCU一次计算优化和提速

    1.背景 STM32 MCU对25.6Kb数据进行压缩,丢掉每个数据的低4位然后2个字节拼接为1个字节.发现处理耗时竞达1ms以上,于是开始进行优化,最后达到200us的效果,提速5倍以上. 2.优化 ...

  3. 顺序表的基本操作【c语言】【创建、插入、删除、输出】

    作为数据结构初学者,上课时对一些知识点掌握得不是很透彻,所以利用课余时间通过微博平台总结所学知识,加深对知识的见解,记录学习历程便于后需要时参考. #include<stdio.h> #i ...

  4. 如何克服社交恐惧症?zz

    zhang Bavol 清华大学核能与新能源技术研究院——核科学与技术/电子爱好者     你说的这个恐惧症我也有一点点,不过现在我是只对那种不是很熟悉的七姑八婆之类的亲戚才会有这种憋屈感觉,对朋友和 ...

  5. jquery 实时监听输入框值变化的完美方案

    只需要同时绑定 oninput 和 onpropertychange 两个事件,但是这并不完美 $('.input-form :input').bind('input propertychange', ...

  6. virtualbox 扩容存储

    本文讲解一种方式: 第一步: 我们需要将virtual box 设置成全局的环境变量 第二步: 找到要修改的xxx.vdi文件,通过命令来修改 下面操作步骤 1.设置virtual box 的环境变量 ...

  7. Redis 学习笔记(篇十):Sentinel

    Sentinel(哨兵)是 Redis 的高可用解决方案:由一个或多个 Sentinel 实例组成的 Sentinel 系统可以监视任意多个主服务器,以及这些主服务器属下的所有从服务器,并在被监视的主 ...

  8. GFS(Google File System,谷歌文件系统)----(1)读写一致性

    GFS副本控制协议--中心化副本控制协议 对于副本集的更新操作有一个中心节点来协调管理,将分布式的并发操作转化为单点的并发操作,从而保证副本集内各节点的一致性.在GFS中,中心节点称之为Primary ...

  9. 【Python基础】15_Python中的变量-进阶

    1.引用的概念 2.可变类型和不可变类型 3.哈希

  10. JS中json数组多字段排序方法(解决兼容性问题)(转)

    前端对一个json数组进行排序,用户需要动态的根据自己的选择来对json数据进行排序. 由于后台表设计问题所以不能用sql进行排序,这里用到了js的sort方法. 如果对单字段排序,那么很简单,一个s ...