YOLO---YOLOv3 with OpenCV 再使用
YOLOv3 with OpenCV官网 @ https://github.com/JackKoLing/opencv_deeplearning_practice/tree/master/pracice3_opencv_yolov3
  下载并备齐:yolov3.weights权重文件、yolov3.cfg网络构建文件、coco.names、xxx.jpg、xxx.mp4文件、object_detection_yolo.cpp、object_detection_yolo.py等文件;
  依赖环境:C++的编译环境(如G++/VScode)、OpenCV3.4.2+(记住安装目录)
  编译情况:下载源文件,无需复杂的编译,直接修改进行应用
  支持:windows + linux  + CPU + GPU(可适用于英特尔)

特点:
(1)在OpenCV中使用YOLOv3, 可以在windows下+ ubuntu下使用。
(2)windows下,之前做,object_detection_yolo.cpp是在Visual Studio(VS)下编译的。
(3)ubuntu下,这次,object_detection_yolo.cpp是g++编译的。
(3)OpenCV的DNN,GPU仅使用英特尔的GPU进行测试,因此如果没有英特尔GPU,代码会将您切换回CPU。
使用:
(1)object_detection_yolo.cpp,执行:
编译,g++ `pkg-config opencv --cflags` object_detection_yolo.cpp -o object_detection_yolo `pkg-config opencv --libs` -std=c++11
测试,a single image:
    ./object_detection_yolo --image=./data/1.jpg
     a video file:
    ./object_detection_yolo --video=./data/run.mp4

(2)object_detection_yolo.py,执行:
a single image:
    python3 object_detection_yolo.py --image=bird.jpg
a video file:
    python3 object_detection_yolo.py --video=run.mp4

#readme.txt
Run the getModels.sh file from command line to download the needed model files sudo chmod a+x getModels.sh
./getModels.sh Python:
Commandline usage to colorize
a single image:
python3 object_detection_yolo.py --image=bird.jpg
a video file:
python3 object_detection_yolo.py --video=run.mp4 C++:
a single image:
./object_detection_yolo.out --image=bird.jpg
a video file:
./object_detection_yolo.out --video=run.mp4 Compilation examples:
g++ -ggdb `pkg-config --cflags --libs /usr/local/Cellar/opencv3/3.4./lib/pkgconfig/opencv.pc` object_detection_yolo.cpp -o object_detection_yolo.out g++ -ggdb `pkg-config --cflags --libs /usr/local/opencv3.4.2/lib/pkgconfig/opencv.pc` object_detection_yolo.cpp -o object_detection_yolo.out # For OpenCV 2.4.x
cd /path/to/opencv/samples/c/
# For OpenCV
cd /path/to/opencv/samples/cpp/
#Compile
g++ -ggdb facedetect.cpp -o facedetect `pkg-config --cflags --libs opencv`
#run
./facedetect /usr/local/opencv3.4.2/include/opencv2/??
cd /home/u/opencv3.4.2/samples/cpp/ ??
g++ -ggdb `pkg-config --cflags --libs /usr/lib/x86_64-linux-gnu/pkgconfig/opencv.pc` object_detection_yolo.cpp -o object_detection_yolo.out g++ -ggdb object_detection_yolo.cpp -o object_detection_yolo.out `pkg-config --cflags --libs /usr/lib/x86_64-linux-gnu/pkgconfig/opencv.pc` g++ object_detection_yolo.cpp -o object_detection_yolo `pkg-config --cflags --libs /usr/lib/x86_64-linux-gnu/pkgconfig/opencv.pc`

-------------------具体遇见问题与解决----------------------
(1)只要环境搭建好,object_detection_yolo.py运行比较顺畅,没有出现什么问题
(2)object_detection_yolo.cpp编译时,遇见问题

运行:
g++ object_detection_yolo.cpp -o object_detection_yolo `pkg-config --cflags --libs /usr/lib/x86_64-linux-gnu/pkgconfig/opencv.pc` 报错:
No package 'object_detection_yolo' found
object_detection_yolo.cpp:10:31: fatal error: opencv2/highgui.hpp: 没有那个文件或目录
#include <opencv2/highgui.hpp>
^
compilation terminated.
u@u1604:~/yolov3-opencv3.4.2/yolo-opencv$ g++ `pkg-config object_detection_yolo --cflags` object_detection_yolo.cpp -o opencv `pkg-config opencv --libs`
Package object_detection_yolo was not found in the pkg-config search path.
Perhaps you should add the directory containing `object_detection_yolo.pc'
to the PKG_CONFIG_PATH environment variable
No package 'object_detection_yolo' found
object_detection_yolo.cpp:11:31: fatal error: opencv2/imgproc.hpp: 没有那个文件或目录
#include <opencv2/imgproc.hpp>
^
compilation terminated.
u@u1604:~/yolov3-opencv3.4.2/yolo-opencv$ g++ `pkg-config object_detection_yolo --cflags` object_detection_yolo.cpp -o opencv `pkg-config opencv --libs`
Package object_detection_yolo was not found in the pkg-config search path.
Perhaps you should add the directory containing `object_detection_yolo.pc'
to the PKG_CONFIG_PATH environment variable
No package 'object_detection_yolo' found
object_detection_yolo.cpp:13:27: fatal error: opencv2/dnn.hpp: 没有那个文件或目录
#include <opencv2/dnn.hpp>
^
compilation terminated. 解决:
查看object_detection_yolo.cpp中highgui.hpp、imgproc.hpp、dnn.hpp都能找到文件,猜测是路径读不进来,按提示更改,
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/dnn/dnn.hpp>
//#include <opencv2/highgui.hpp>
//#include <opencv2/imgproc.hpp>
//#include <opencv2/dnn.hpp>
--------------------
拷贝
sudo cp -r /home/用户名/桌面/lib /usr
sudo cp -r /home/u/桌面/dnn.hpp /usr/include/opencv2/dnn
新建
sudo touch filename 新建文件
sudo mkdir foldername 新建文件夹
删除
sudo rm -rf 文件夹
sudo rm -rf 文件
----------------------------------
上一步,通了
继续执行:
g++ `pkg-config opencv --cflags` object_detection_yolo.cpp -o object_detection_yolo `pkg-config opencv --libs`

(参考 g++ `pkg-config opencv --cflags` opencv.cpp -o opencv `pkg-config opencv --libs` #将OpenCV的库包含进去,进行编译)

报错:
------------------------------
u@u1604:~/yolov3-opencv3.4.2/yolo-opencv$ g++ `pkg-config opencv --cflags` object_detection_yolo.cpp -o object_detection_yolo `pkg-config opencv --libs` object_detection_yolo.cpp: In function ‘int main(int, char**)’:
object_detection_yolo.cpp:77:31: error: no matching function for call to ‘std::basic_ifstream<char>::basic_ifstream(std::__cxx11::string&)’
ifstream ifile(str);
------------------------------

解决:
gcc/g++以c++11编译(仅g++ .8及以上版本才支持C++ 11标准。)
g++ --version
g++ -V
再执行OK:
g++ `pkg-config opencv --cflags` object_detection_yolo.cpp -o object_detection_yolo `pkg-config opencv --libs` -std=c++11 执行可执行文件:
./object_detection_yolo --image=./data/1.jpg

*****************************#再用**************************************

#

g++ `pkg-config opencv --cflags` yolo.cpp -o yolo `pkg-config opencv --libs` -std=c++

a single image:
./yolo --image=./data/.jpg
a video file:
./yolo --video=./data/run.mp4 使用语法:
u@u160406:~/yolo-opencv$ g++ `pkg-config opencv --cflags` yolo.cpp -o yolo `pkg-config opencv --libs` -std=c++
u@u160406:~/yolo-opencv$ ./yolo --video=./data/run.mp4

YOLO---YOLOv3 with OpenCV 再使用的更多相关文章

  1. 10分钟学会使用YOLO及Opencv实现目标检测(下)|附源码

    将YOLO应用于视频流对象检测 首先打开 yolo_video.py文件并插入以下代码: # import the necessary packages import numpy as np impo ...

  2. 一文带你学会使用YOLO及Opencv完成图像及视频流目标检测(上)|附源码

    计算机视觉领域中,目标检测一直是工业应用上比较热门且成熟的应用领域,比如人脸识别.行人检测等,国内的旷视科技.商汤科技等公司在该领域占据行业领先地位.相对于图像分类任务而言,目标检测会更加复杂一些,不 ...

  3. YOLO object detection with OpenCV

    Click here to download the source code to this post. In this tutorial, you’ll learn how to use the Y ...

  4. Python实现YOLO目标检测

    作者:R语言和Python学堂 链接:https://www.jianshu.com/p/35cfc959b37c 1. 什么是目标检测? YOLO目标检测的一个示例 啥是目标检测? 拿上图 (用YO ...

  5. 从YOLOv1到YOLOv3,目标检测的进化之路

    https://blog.csdn.net/guleileo/article/details/80581858 本文来自 CSDN 网站,作者 EasonApp. 作者专栏: http://dwz.c ...

  6. YOLO---Darknet下使用YOLO的常用命令

    Darknet下使用YOLO的常用命令 整理了一下,随手记一下. 在终端里,直接运行时Yolo的Darknet的各项命令,/home/wp/darknet/cfg/coco.data文件,使用原件:= ...

  7. Yolo车辆检测+LaneNet车道检测

    Yolo车辆检测+LaneNet车道检测 源代码:https://github.com/Dalaska/Driving-Scene-Understanding/blob/master/README.m ...

  8. YOLO v1到YOLO v4(下)

    YOLO v1到YOLO v4(下) Faster YOLO使用的是GoogleLeNet,比VGG-16快,YOLO完成一次前向过程只用8.52 billion 运算,而VGG-16要30.69bi ...

  9. Ubuntu下移植OpenCv

    通过近一周的时候终于成功交叉编译opencv成功了,真心不容易.有一句话乃真理也,凡事贵在坚持.过程总是痛苦的,因为不懂得很多问题但是又需要面对很多问题,最大的收获就是耐心解决所有问题后就懂得这些了. ...

随机推荐

  1. socket 一个websocke对应一个socketclient对象

    using System; using System.Collections.Concurrent; using System.Collections.Generic; using System.Co ...

  2. 性能测试loadrunner11工具再也不用担心浏览器兼容的问题了(目前试过的各版本浏览器都是成功的)

    工具:Loadrunner 11.0+Fiddler+浏览器(谷歌.火狐.IE等) 步骤一:查看抓包工具Fiddler对应的端口 1.打开Fiddler------工具------选项-----连接, ...

  3. 侯捷C++内存管理(一)

    1.Overview 2.内存分配的每一层面 3.四个层面的基本用法 1).对比一下: 4.基本构件之一newdelete expression(上) ——>new和operator new.m ...

  4. go context源码解析

    go 的context贯穿整个goroutine的运行控制的中枢,可以实现执行的生命周期的控制. Context是一个接口,他派生了context.emptyCtx(TODO),cancelCtx,t ...

  5. 使用Homebrew来安装Node等工具

    原文转载自:https://www.cnblogs.com/richard-youth/p/9718349.html 使用 React Native,必须安装的依赖有:Node.Watchman 和 ...

  6. BBC这10部国宝级纪录片,让孩子看遍世间最美的地方

    https://weibo.com/ttarticle/p/show?id=2309404382383649486138#related

  7. API参考

    http://www.yfvb.com/help/win32sdk/index.htm?page=html/13dsy.g.htm

  8. c++学习(三)------static数据与成员函数

    疑惑: static类型成员是类的全局变量,所有类的实例都享有这个变量,或者说这个变量不属于任何一个类的实例. static类型变量可以为private,或public或其他(static数据可以被继 ...

  9. rgba()和opacity的比较(转)

    https://blog.csdn.net/u014150409/article/details/44906767

  10. css 清除浮动 & BFC

    前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! 文档流的概念:html 中 block 块元素默认是单独占据一行的,从上到下排列,也就是我们说的文档流. ...