YOLO---YOLOv3 with OpenCV 再使用
YOLOv3 with OpenCV官网 @ https://github.com/JackKoLing/opencv_deeplearning_practice/tree/master/pracice3_opencv_yolov3
  下载并备齐:yolov3.weights权重文件、yolov3.cfg网络构建文件、coco.names、xxx.jpg、xxx.mp4文件、object_detection_yolo.cpp、object_detection_yolo.py等文件;
  依赖环境:C++的编译环境(如G++/VScode)、OpenCV3.4.2+(记住安装目录)
  编译情况:下载源文件,无需复杂的编译,直接修改进行应用
  支持:windows + linux  + CPU + GPU(可适用于英特尔)

特点:
(1)在OpenCV中使用YOLOv3, 可以在windows下+ ubuntu下使用。
(2)windows下,之前做,object_detection_yolo.cpp是在Visual Studio(VS)下编译的。
(3)ubuntu下,这次,object_detection_yolo.cpp是g++编译的。
(3)OpenCV的DNN,GPU仅使用英特尔的GPU进行测试,因此如果没有英特尔GPU,代码会将您切换回CPU。
使用:
(1)object_detection_yolo.cpp,执行:
编译,g++ `pkg-config opencv --cflags` object_detection_yolo.cpp -o object_detection_yolo `pkg-config opencv --libs` -std=c++11
测试,a single image:
    ./object_detection_yolo --image=./data/1.jpg
     a video file:
    ./object_detection_yolo --video=./data/run.mp4

(2)object_detection_yolo.py,执行:
a single image:
    python3 object_detection_yolo.py --image=bird.jpg
a video file:
    python3 object_detection_yolo.py --video=run.mp4

#readme.txt
Run the getModels.sh file from command line to download the needed model files sudo chmod a+x getModels.sh
./getModels.sh Python:
Commandline usage to colorize
a single image:
python3 object_detection_yolo.py --image=bird.jpg
a video file:
python3 object_detection_yolo.py --video=run.mp4 C++:
a single image:
./object_detection_yolo.out --image=bird.jpg
a video file:
./object_detection_yolo.out --video=run.mp4 Compilation examples:
g++ -ggdb `pkg-config --cflags --libs /usr/local/Cellar/opencv3/3.4./lib/pkgconfig/opencv.pc` object_detection_yolo.cpp -o object_detection_yolo.out g++ -ggdb `pkg-config --cflags --libs /usr/local/opencv3.4.2/lib/pkgconfig/opencv.pc` object_detection_yolo.cpp -o object_detection_yolo.out # For OpenCV 2.4.x
cd /path/to/opencv/samples/c/
# For OpenCV
cd /path/to/opencv/samples/cpp/
#Compile
g++ -ggdb facedetect.cpp -o facedetect `pkg-config --cflags --libs opencv`
#run
./facedetect /usr/local/opencv3.4.2/include/opencv2/??
cd /home/u/opencv3.4.2/samples/cpp/ ??
g++ -ggdb `pkg-config --cflags --libs /usr/lib/x86_64-linux-gnu/pkgconfig/opencv.pc` object_detection_yolo.cpp -o object_detection_yolo.out g++ -ggdb object_detection_yolo.cpp -o object_detection_yolo.out `pkg-config --cflags --libs /usr/lib/x86_64-linux-gnu/pkgconfig/opencv.pc` g++ object_detection_yolo.cpp -o object_detection_yolo `pkg-config --cflags --libs /usr/lib/x86_64-linux-gnu/pkgconfig/opencv.pc`

-------------------具体遇见问题与解决----------------------
(1)只要环境搭建好,object_detection_yolo.py运行比较顺畅,没有出现什么问题
(2)object_detection_yolo.cpp编译时,遇见问题

运行:
g++ object_detection_yolo.cpp -o object_detection_yolo `pkg-config --cflags --libs /usr/lib/x86_64-linux-gnu/pkgconfig/opencv.pc` 报错:
No package 'object_detection_yolo' found
object_detection_yolo.cpp:10:31: fatal error: opencv2/highgui.hpp: 没有那个文件或目录
#include <opencv2/highgui.hpp>
^
compilation terminated.
u@u1604:~/yolov3-opencv3.4.2/yolo-opencv$ g++ `pkg-config object_detection_yolo --cflags` object_detection_yolo.cpp -o opencv `pkg-config opencv --libs`
Package object_detection_yolo was not found in the pkg-config search path.
Perhaps you should add the directory containing `object_detection_yolo.pc'
to the PKG_CONFIG_PATH environment variable
No package 'object_detection_yolo' found
object_detection_yolo.cpp:11:31: fatal error: opencv2/imgproc.hpp: 没有那个文件或目录
#include <opencv2/imgproc.hpp>
^
compilation terminated.
u@u1604:~/yolov3-opencv3.4.2/yolo-opencv$ g++ `pkg-config object_detection_yolo --cflags` object_detection_yolo.cpp -o opencv `pkg-config opencv --libs`
Package object_detection_yolo was not found in the pkg-config search path.
Perhaps you should add the directory containing `object_detection_yolo.pc'
to the PKG_CONFIG_PATH environment variable
No package 'object_detection_yolo' found
object_detection_yolo.cpp:13:27: fatal error: opencv2/dnn.hpp: 没有那个文件或目录
#include <opencv2/dnn.hpp>
^
compilation terminated. 解决:
查看object_detection_yolo.cpp中highgui.hpp、imgproc.hpp、dnn.hpp都能找到文件,猜测是路径读不进来,按提示更改,
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/dnn/dnn.hpp>
//#include <opencv2/highgui.hpp>
//#include <opencv2/imgproc.hpp>
//#include <opencv2/dnn.hpp>
--------------------
拷贝
sudo cp -r /home/用户名/桌面/lib /usr
sudo cp -r /home/u/桌面/dnn.hpp /usr/include/opencv2/dnn
新建
sudo touch filename 新建文件
sudo mkdir foldername 新建文件夹
删除
sudo rm -rf 文件夹
sudo rm -rf 文件
----------------------------------
上一步,通了
继续执行:
g++ `pkg-config opencv --cflags` object_detection_yolo.cpp -o object_detection_yolo `pkg-config opencv --libs`

(参考 g++ `pkg-config opencv --cflags` opencv.cpp -o opencv `pkg-config opencv --libs` #将OpenCV的库包含进去,进行编译)

报错:
------------------------------
u@u1604:~/yolov3-opencv3.4.2/yolo-opencv$ g++ `pkg-config opencv --cflags` object_detection_yolo.cpp -o object_detection_yolo `pkg-config opencv --libs` object_detection_yolo.cpp: In function ‘int main(int, char**)’:
object_detection_yolo.cpp:77:31: error: no matching function for call to ‘std::basic_ifstream<char>::basic_ifstream(std::__cxx11::string&)’
ifstream ifile(str);
------------------------------

解决:
gcc/g++以c++11编译(仅g++ .8及以上版本才支持C++ 11标准。)
g++ --version
g++ -V
再执行OK:
g++ `pkg-config opencv --cflags` object_detection_yolo.cpp -o object_detection_yolo `pkg-config opencv --libs` -std=c++11 执行可执行文件:
./object_detection_yolo --image=./data/1.jpg

*****************************#再用**************************************

#

g++ `pkg-config opencv --cflags` yolo.cpp -o yolo `pkg-config opencv --libs` -std=c++

a single image:
./yolo --image=./data/.jpg
a video file:
./yolo --video=./data/run.mp4 使用语法:
u@u160406:~/yolo-opencv$ g++ `pkg-config opencv --cflags` yolo.cpp -o yolo `pkg-config opencv --libs` -std=c++
u@u160406:~/yolo-opencv$ ./yolo --video=./data/run.mp4

YOLO---YOLOv3 with OpenCV 再使用的更多相关文章

  1. 10分钟学会使用YOLO及Opencv实现目标检测(下)|附源码

    将YOLO应用于视频流对象检测 首先打开 yolo_video.py文件并插入以下代码: # import the necessary packages import numpy as np impo ...

  2. 一文带你学会使用YOLO及Opencv完成图像及视频流目标检测(上)|附源码

    计算机视觉领域中,目标检测一直是工业应用上比较热门且成熟的应用领域,比如人脸识别.行人检测等,国内的旷视科技.商汤科技等公司在该领域占据行业领先地位.相对于图像分类任务而言,目标检测会更加复杂一些,不 ...

  3. YOLO object detection with OpenCV

    Click here to download the source code to this post. In this tutorial, you’ll learn how to use the Y ...

  4. Python实现YOLO目标检测

    作者:R语言和Python学堂 链接:https://www.jianshu.com/p/35cfc959b37c 1. 什么是目标检测? YOLO目标检测的一个示例 啥是目标检测? 拿上图 (用YO ...

  5. 从YOLOv1到YOLOv3,目标检测的进化之路

    https://blog.csdn.net/guleileo/article/details/80581858 本文来自 CSDN 网站,作者 EasonApp. 作者专栏: http://dwz.c ...

  6. YOLO---Darknet下使用YOLO的常用命令

    Darknet下使用YOLO的常用命令 整理了一下,随手记一下. 在终端里,直接运行时Yolo的Darknet的各项命令,/home/wp/darknet/cfg/coco.data文件,使用原件:= ...

  7. Yolo车辆检测+LaneNet车道检测

    Yolo车辆检测+LaneNet车道检测 源代码:https://github.com/Dalaska/Driving-Scene-Understanding/blob/master/README.m ...

  8. YOLO v1到YOLO v4(下)

    YOLO v1到YOLO v4(下) Faster YOLO使用的是GoogleLeNet,比VGG-16快,YOLO完成一次前向过程只用8.52 billion 运算,而VGG-16要30.69bi ...

  9. Ubuntu下移植OpenCv

    通过近一周的时候终于成功交叉编译opencv成功了,真心不容易.有一句话乃真理也,凡事贵在坚持.过程总是痛苦的,因为不懂得很多问题但是又需要面对很多问题,最大的收获就是耐心解决所有问题后就懂得这些了. ...

随机推荐

  1. CenOS 7 权限命令

    修改拥有者chown chown 拥有者名称 文件名 修改组chgrpchgrp 组名 文件名 修改权限 chmodchmod 权限 文件名

  2. Vue.js—60分钟快速入门

    本文摘自:http://www.cnblogs.com/keepfool/p/5619070.html Vue.js是当下很火的一个JavaScript MVVM库,它是以数据驱动和组件化的思想构建的 ...

  3. vector iterators incompatible

    字面翻译迭代器类型不兼容 今天同事遇到的这个问题算是一个习惯性写法的问题.描述一下代码: struct Track{}; class BaseTrack { - std::vector<Trac ...

  4. 写一个单独的qt模块 -- ongoing

    彩阳发的链接: https://wiki.qt.io/Creating_a_new_module_or_tool_for_Qt

  5. typescript无法识别vue中的$refs

    例如:vue-fullscreen <template> <div class="Test"> <fullscreen ref="fulls ...

  6. [转帖]「日常小记」linux中强大且常用命令:find、grep

    「日常小记」linux中强大且常用命令:find.grep https://zhuanlan.zhihu.com/p/74379265 在linux下面工作,有些命令能够大大提高效率.本文就向大家介绍 ...

  7. [转帖]Cacls和ICacls

    Cacls和ICacls https://www.cnblogs.com/Aley/p/11089538.html Need Study 解释:  Cacls:显示或修改文件的访问控制列表(ACL) ...

  8. WCF-复杂配置

    两种模式,一个契约两个实现,两个契约一个实现. 服务类库 宿主 static void Main(string[] args) { ServiceHost sh1 = new ServiceHost( ...

  9. hadoop--Unable to load native-hadoop library for your platform解决方法

    笔者实验环境:centos 7.4.1708,hadoop-2.6.0-cdh5.14.2. 执行hadoop命令时出现以下告警,不能加载相关库: WARN util.NativeCodeLoader ...

  10. Redis 集群_主从复制_哨兵模型

    1 redis集群简介 1.1 集群的概念 所谓的集群,就是通过添加服务器的数量,提供相同的服务,从而让服务器达到一个稳定.高效的状态. 1.1.1 使用redis集群的必要性 问题:我们已经部署好了 ...