图论——Floyd算法拓展及其动规本质
一、Floyd算法本质
首先,关于Floyd算法:
Floyd-Warshall算法是一种在具有正或负边缘权重(但没有负周期)的加权图中找到最短路径的算法。算法的单个执行将找到所有顶点对之间的最短路径的长度(加权)。
通俗一点说,Floyd就是可以用于求解多源汇最短路径的算法,也就是求连通图中任意两点间的最短路径,当然,如果不连通,它返回的就是无穷大(初始化为无穷大)。Floyd可以处理负权,但无法处理有负权环的图。
接下去进入正题:
众所周知,Floyd算法本质其实是动态规划。它其实是由三维数组的DP优化而来。
我们用数组dis[i,j,k]表示从点i到点j,以前k个点作为中转点的最短路径长度。
为了实现状态转移,我们把当前dis[i,j,k]的所有状态的集合划分为两类,一类是经过k点的,一类是不经过k点的。对于前者,显然dis[i,j,k]=dis[i,j,k-1];对于后者,我们可以得到dis[i,j,k]=dis[i,k,k-1]+dis[k,j,k-1],也就是i到k的最短路径长度加上k到j的最短路径长度。于是我们便可以得到状态转移方程:
dis[i,j,k] = min(dis[i,j,k-1],dis[i,k,k-1]+dis[k,j,k-1]
边界条件:dis[i,j,0] = w[i,j],即i与j之间的直接边的权值,若不存在则为正无穷;还有dis[i,i,0]=0。
代码如下:
void floyd_original() {
for(int k=;k<=n;k++) {
for(int i=;i<=n;i++) {
for(int j=;j<=n;j++) {
dis[i][j][k]=min(dis[i][j][k-],dis[i][k][k-]+dis[k][j][k-]);
}
}
}
}
类比前面背包问题的优化方式,我们发现对于每一层k,它的状态计算只与第k-1层的状态有关,那么我们便可以省略这一维。因为省略之后,在计算第k层的dis[i,j]时,我们所需的dis[i,k]和dis[k,j]还是上一层的。
这一点用一个式子便可证明:
dis[i,k,k] = min(dis[i,k,k-1],dis[i,k,k-1]+dis[k,k,k-1]) = min(dis[i,k,k-1], d[i,k,k-1]+0) = d[i,k,k-1]
dis[k,j]同理即可得证。
于是我们便可得到最普遍的二维数组的状态转移方程:
dis[i,j] = min(dis[i,j],dis[i,k]+dis[k,j])
从三维变成二维确实降低了空间开销,但是我们也可以发现时间复杂度是不变的,仍然是O(n³)。
二、Floyd算法变形解决有边数限制的最短路问题
我们用三维数组d[i,j,e]表示点i到点j,经过e条边的最短路径长度。
我们假设经过的倒数第二个点是k,那么我们很容易就可以得到状态转移方程:
d[i,j,e]=min{d[i,k,e-1]+w[k,j]} k∈[1,n]
代码如下:
for(int e=;e<=n;e++)
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
d[i][j][e]=min(d[i][j][e],d[i,k,e-]+w[k][j]);
但是这样处理的时间复杂度高达O(n4),于是我们自然会想到要做一些优化。
我们为了达到明显的指数级别的优化效果,我们选择二进制优化。
假设限制的边数为s时,我们把第三维e表示成2e条边。那么我们预处理时只需要将2e<s的所有符合条件的e枚举完即可。然后便可以用若干个2的整数次幂的和表示出s。
我们再用数组f[i,j,t]来表示状态,其中t表示边数为前t个2的整数次幂的和,那么我们就可以得到状态转移方程:
f[i,j,t] = min{f[i,k,t-1]+d[k,j,s(t)]}
其中s(t)表示将s进行2的指数幂分解后,所得的所有的2的幂中的第t个2的幂。k是i到j的最短路径中间经过的一个点,将路径中所有的边划分为前20+21+…+2t-1条与后2t条。
那么我们就只需在最外层枚举k即可。这个算法的时间复杂度就可以降低到O(n3logn)。
算法思路:
先预处理出d数组,d[i,j,e]表示从顶点i到顶点j,经过2k条边的最短路长度。找到中介点k,将路径边数分成两半。
状态转移方程如下:
d[i,j,e]=min(d[i,j,e],d[i,k,e-1]+d[k,j,e-1]}
然后处理f数组。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N = 1e3+;
const int K = log2(N);
int n,m,s;
int d[N][N][K],f[N][N][K]; //使用邻接矩阵存储图 void floyd(int s) //有边数限制的最短路问题
{
memset(f,0x3f,sizeof f);
int z[K],max_e=log2(s); //s为所限制的边数 memset(z,,sizeof z); //先处理出s的2的指数次幂的分解,用z数组存储
//如 p=2^1+2^4+2^5,则z[1]=1,z[2]=4,z[3]=5 int cnt=,sum=;
while(s)
{
if(s&)z[++cnt]=sum;
sum++;
s>>=;
} //处理d数组,d[i][j][k]表示从i到j经过2^k条边的最短路长度
//复杂度 n^3*logs
for(int e=;e<=max_e;e++)
for(int i=;i<=n;i++)d[i][i][e]=; //处理d的边界
for(int e=;e<=max_e;e++)
{
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
//状态转移方程如下
d[i][j][e]=min(d[i][j][e],d[i][k][e-]+d[k][j][e-]);
//找到中介点k,将2^e条边的最短路分成两半,分别是2^(e-1)条。
}
} for(int t=;t<=cnt;t++)
for(int i=;i<=n;i++)f[i][i][t]=; //处理f的边界
for(int t=;t<=cnt;t++)
{
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
//状态转移方程
f[i][j][t]=min(f[i][j][t],f[i][k][t-]+d[k][j][z[t]]);
}
} printf("%d\n",f[][n][cnt]);
} int main()
{
scanf("%d%d%d",&n,&m,&s); memset(d,0x3f,sizeof d); // d数组的初始化 for(int i=;i<=m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
d[u][v][]=d[v][u][]=w; // d数组的赋值
} floyd(s);
return ;
}
关于算法适用范围:
个人认为,由于时间复杂度如此感人,相比于同样用于处理“有边数限制的最短路问题”的Bellman-Ford算法的最坏情况,也就是遇到完全图时,O(nm)变成O(n3),也是过犹不及。
但是,当题目毒瘤到一定程度的时候,当出题人变态到一种境界的时候,边数极其之多,Bellman-Ford算法所用以存储图的边集数组所需的空间开销极大,超过限制时,就是这个算法大展拳脚的时候了。
大家对这个算法有兴趣的话可以去看一下这道题:POJ 3613
图论——Floyd算法拓展及其动规本质的更多相关文章
- [图论]Floyd 算法小结
Floyd 算法小结 By Wine93 2013.11 1. Floyd算法简介 Floyd算法利用动态规划思想可以求出任意2点间的最短路径,时间复杂度为O(n^3),对于稠密图, 效率要高于执行 ...
- 图论·Floyd算法·HDU2544&1874 (伪)2066
在看到1874的题时,第一反应是用上一篇的并查集方法,后来查了一下是要用Floyd做,所以就去查Floyd算法的资料. 即插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法. 核心代码: ma ...
- 【uva 10048】Audiophobia(图论--Floyd算法)
题意:有一个N点M边的无向带权图,边权表示路径上的噪声值.有Q个询问,输出 x,y 两点间的最大噪声值最小的路径的该值.(N≤100,M≤1000,Q≤10000) 解法:N值小,且问多对点之间的路径 ...
- Floyd 算法的动态规划本质
[转载自:http://www.cnblogs.com/chenying99/p/3932877.html] Floyd–Warshall(简称Floyd算法)是一种著名的解决任意两点间的最短路径(A ...
- 探求Floyd算法的动态规划本质(转)
---恢复内容开始--- Floyd–Warshall(简称Floyd算法)是一种著名的解决任意两点间的最短路径(All Paris Shortest Paths,APSP)的算法.从表面上粗看,Fl ...
- 探求Floyd算法的动态规划本质
Floyd–Warshall(简称Floyd算法)是一种著名的解决任意两点间的最短路径(All Paris Shortest Paths,APSP)的算法.从表面上粗看,Floyd算法是一个非常简单的 ...
- 图论(floyd算法):NOI2007 社交网络
[NOI2007] 社交网络 ★★ 输入文件:network1.in 输出文件:network1.out 简单对比 时间限制:1 s 内存限制:128 MB [问题描述] 在社交网络( ...
- 图论之最短路径floyd算法
Floyd算法是图论中经典的多源最短路径算法,即求任意两点之间的最短路径. 它可采用动态规划思想,因为它满足最优子结构性质,即最短路径序列的子序列也是最短路径. 举例说明最优子结构性质,上图中1号到5 ...
- LCS(最长公共子序列)动规算法正确性证明
今天在看代码源文件求diff的原理的时候看到了LCS算法.这个算法应该不陌生,动规的经典算法.具体算法做啥了我就不说了,不知道的可以直接看<算法导论>动态规划那一章.既然看到了就想回忆下, ...
随机推荐
- Java通过Socket和动态代理实现简易RPC框架
本文转自Dubbo作者梁飞大神的CSDN(https://javatar.iteye.com/blog/1123915),代码简洁,五脏俱全. 1.首先实现RpcFramework,实现服务的暴露与引 ...
- paramiko模块实现远程传输控制
一.什么是paramiko呢? paramiko是一个用于做远程控制的模块,使用该模块可以对远程服务器进行命令或文件操作,值得一说的是,fabric和ansible内部的远程管理就是使用的parami ...
- NOIP2009-2018简要题解
口胡警告 NOIP2009 潜伏者 模拟 Hankson 的趣味题 对四个数\(a_0,a_1,b_0,b_1\)分解质因数,结果序列分别记为\(\{p1^{b1}\},\{p2^{b2}\},\{p ...
- UML中的类图
模型 类 接口 关系 关联关系 描述了类的结构之间的关系.具有方向.名字.角色和多重性等信息.一般的关联关系语义较弱.也有两种语义较强,分别是聚合与组合 聚合 特殊关联关系,指明一个聚集(整体)和组成 ...
- 微信小程序中weui使用方法
1.git下载,找到dist文件: https://github.com/wechat-miniprogram/weui-miniprogram 2.把dist文件中的style复制到根目录 app. ...
- angular-file-upload.min.js.map文件下载
https://github.com/nervgh/angular-file-upload 下载地址 在文件 菜单栏有对应文件
- 测试clang-format的格式化效果
我自己写的业余框架已告一段落,主体功能已完成,剩下的就是优化.第一个要优化的,就是代码格式.我一直是用编辑器写代码的,从之前的UltraEdit到notepad++到sublime text,再到现在 ...
- css 之内容溢出滚动,隐藏滚动条(解决火狐浏览隐藏不了滚动条问题)
解决火狐浏览隐藏不了滚动条问题 1.里层容器的width多17px,外层容器溢出隐藏,能兼容各个浏览器 .outContainer { width:350px; height:300px; overf ...
- Jmeter中间件处理-ActiveMQ
消息队列是目前的主流中间件,我们在日常测试过程中,无论是接口还是压力测试,都会遇到需要处理这些中间件数据的情况.本文以Activemq的Topic为例,说明如何基于Jmeter实现消息队列数据的发送和 ...
- java——java跨平台原理
不同操作系统不同的虚拟机,屏蔽不同系统指令集的差异. 开发程序只需要遵循java规范: