janusgraph-遍历图的语言
精确查询
|
语句含义 |
测试语句 |
执行时间 |
|
查询顶点标签为FALV的顶点数量 |
g.V().hasLabel('FALV').count() |
2400s |
|
查询顶点属性中id为19012201 |
clockWithResult(1) {g.V().has('id','19012201') } |
0.18540099999999998s |
|
查询顶点属性中id为19012201 |
clockWithResult(1) {g.V().has('id','19012201').valueMap().next()} |
1.309877s |
|
查询顶点属性中id为19012201 |
clockWithResult(1) {g.V().has('KUAN','id','19012201') } |
0.114287ms |
|
查询顶点属性中id为19012201 |
clockWithResult(1) {g.V().has('KUAN','id','19012201').valueMap().next()} |
1.752052ms |
|
查询出顶点属性中内容为。。。的顶点 |
g.V().has('neirong','<p> 本法所称农业机械化,是指运用先进适用的农业机械装备农业,改善农业生产经营条件,不断提高农业的生产技术水平和经济效益、生态效益的过程。</p>').values() |
0. 228ms |
|
查询顶点属性中id为'403116' |
g.V().has('id','403116').profile() |
60.364ms |
|
查询顶点属性中效力级别为2的顶点 |
g.V().has('xiaolijibie','2').limit(10).valueMap() |
只查询出一条数据 |
|
查询包含属性值xiaolijibie的顶点 |
g.V().has('xiaolijibie') |
不使用索引 |
|
查询属性vlabel为法律的 |
g.V().has('vlabel','FALV').valueMap() |
遍历所有的顶点进行输出 |
2. 模糊查询
|
语句语义 |
测试语句 |
执行时间 |
|
查询出顶点属性中包含’建设’ |
g.V().where(properties().hasValue(textContainsFuzzy("建设"))).limit(20).valueMap() |
0.253718ms |
|
查询出顶点为FALV属性中包含’建设’前20 |
g.V().hasLabel('FALV').where(properties().hasValue(textContainsFuzzy("建设"))).limit(20) |
2400s |
|
查询出顶点属性包含’建设’的顶点数 |
clockWithResult(1) {g.V().where(properties().hasValue(textContainsFuzzy("建设"))).count().next()} |
会遍历所有的顶点 |
|
查询出顶点属性包含’建设’的顶点数,限制为两个 |
g.V().where(properties().hasValue(textContainsFuzzy("建设"))).limit(2).profile() |
162.023ms |
|
clockWithResult(1) {g.V().where(properties().hasValue(textContainsFuzzy("北京市"))).has('id','19240800').valueMap().next()} |
||
|
模糊匹配共和国 |
clockWithResult(1){g.V().where(properties().hasValue(textContainsFuzzy("共和国"))).valueMap().next()} |
250127.85826799998ms |
|
查询法律中有中国的顶点 |
g.V().where(properties().hasValue(textContainsFuzzy("中国"))).has('vlabel','FALV') |
遍历所有的顶点 |
|
模糊匹配北京和建设两个关键字 |
clockWithResult(1) {g.V().where(properties().hasValue(textContainsFuzzy("北京市"))).where(properties().hasValue(textContainsFuzzy("建设"))).valueMap().next()} |
49961.617301ms |
3. 谓词查询
|
语句含义 |
测试语句 |
执行时间 |
|
查询所有定点数量 |
g.V().count() |
97s |
|
查询所有的边数量 |
g.E().count() |
2400s |
|
查询法律标签有out关系的顶点 |
g.V().hasLabel('FALV').out().limit(10) |
|
|
查询一个顶点具有out方向的邻接点 |
clockWithResult(1){g.V().has('id','332734').out('FALVFATIAO').count().next()} |
3.349717ms |
|
分组查看 |
g.V().groupCount().by(label) |
4. 探索查询
|
语句语义 |
测试语句 |
执行时间 |
|
查询某个实体的向外关系 |
clockWithResult(1) {g.V().has('id','19013190').out().next()}; |
1.353237ms |
|
查询某个实体的向内关系 |
clockWithResult(1) {g.V().has('id','19013104').in().next()}; |
1.7450409999999998ms |
|
多关系查询 |
||
|
输入实体类型+属性约束,返回一个实体及其所有一级关系 |
clockWithResult(1) {g.V().has('id', '19012335').outE().inV().path().by(valueMap(true)).next()} |
2.051107ms |
|
查询与顶点id为332734有直接关联的顶点以及边的关系 |
g.V().has('id','332734').bothE().otherV().path().profile() |
|
|
查询与顶点id为332734有直接关联的顶点 |
g.V().has('FALVFAGUI','id','332734').both().path().profile() |
4.840 |
|
两点之间是否有路径存在 |
g.V('983044208').repeat(out()).until(hasId('983044200')).path().profile |
18ms |
|
路径为三的探索 |
v=g.V().has('id','332733').out('FALVFATIAO').out('FATIAOKUAN').out('KUANXIANG').valueMap() |
1822.820ms |
|
该顶点所有的向外边为款的结果全部输出 |
g.V(v).repeat(out('KUANXIANG')).emit().valueMap() |
1ms |
janusgraph-遍历图的语言的更多相关文章
- 1048 图的宽度优先遍历序列 c语言
描述 图(graph)是数据结构 G=(V,E),其中V是G中结点的有限非空集合,结点的偶对称为边(edge):E是G中边的有限集合.设V={0,1,2,……,n-1},图中的结点又称为顶点(vert ...
- 深度-first遍历图--邻接表实现
在这里,邻接表的实现与深度优先遍历图,使用递归. #include<iostream> using namespace std; #define VERTEXNUM 5//结点数 stru ...
- Python 非递归遍历图
class Queue: def __init__(self,max_size): self.max_size = int(max_size) self.queue = [] def put(self ...
- JanusGraph多图配置 (cassandra)
JanusGraph多图配置目的 :一个端口开启后可根据句柄操作多个图 .(cassandra存储后端) 1.GremlinServer多图配置 服务器gremlin-server.yaml中可以设置 ...
- 图解Janusgraph系列-图数据底层序列化源码分析(Data Serialize)
图解Janusgraph系列-图数据底层序列化源码分析(Data Serialize) 大家好,我是洋仔,JanusGraph图解系列文章,实时更新~ 图数据库文章总目录: 整理所有图相关文章,请移步 ...
- 图的深度遍历(C语言)邻接矩阵表示
知识讲解: 图的遍历分为两种,深度遍历与广度遍历.这里讨论深度遍历. 以上图为例讨论图(图片来自<算法笔记>)的深度遍历: 设图形的顶点数为n. 先从顶点v0开始,用一个数组vis[n]来 ...
- 图的深度优先和广度优先遍历(图以邻接表表示,由C++面向对象实现)
学习了图的深度优先和广度优先遍历,发现不管是教材还是网上,大都为C语言函数式实现,为了加深理解,我以C++面向对象的方式把图的深度优先和广度优先遍历重写了一遍. 废话不多说,直接上代码: #inclu ...
- 邻接表存储图,DFS遍历图的java代码实现
import java.util.*; public class Main{ static int MAX_VERTEXNUM = 100; static int [] visited = new i ...
- 数据结构上机实验dfs&&bfs遍历图
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<queue> #inc ...
- [DFS遍历图]UVA10562 Undraw the Trees
传送门: 1. UVA - 10562 2. Vjudge [看图写树] 将题目中给出的树改写为 括号表示法 即 (ROOT (SON1(...) (SON2(...)...(SONn(... ...
随机推荐
- 用Qt实现一个计算器
一· 介绍 目的: 做一个标准型的计算器.用于学习Qt基础学习. 平台: Qt 5.12.0 二· 结构框架设计 2.1最终产品样式 界面的设计大体按照win系统自带的计算器做模仿.左边是win7 的 ...
- C++和c语言的区别
在大家眼中c++与C语言很像,但两个有本质的区别,C语言是面向过程的,而C++是面向对象的,下面就给大家梳理梳理. 1.C语言有标准的函数库,它们松散的,只是把功能相同的函数放在一个头文件中:而C++ ...
- C语言指针的一些用法
指针是C语言的灵魂,精华之所在.指针强大而危险,用得好是一大利器,用得不好是一大潜在危害.正是指针具有强大而又危险的特性,加上指针比较难,很多人用的不好,所以越是封装程度高的语言,越是没有指针的&qu ...
- POI2015 WYC
也许更好的阅读体验 \(\mathcal{Description}\) 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长 ...
- jupyter notebook在 mac 使用
1. 查看当前 conda 所拥有的环境列表 conda env list 2. 选择要进入的环境 source activate your_env_name 3. 启动 jupyter jupyte ...
- docker swarm yaml
https://www.cnblogs.com/bigberg/p/8867326.html 一.简介 Docker有个编排工具docker-compose,可以将组成某个应该的多个docker容器编 ...
- MySQL路线
一 数据库简介与安装 二 库操作 三 表操作 四 数据操作 五 索引原理与慢查询优化 六 数据备份与慢查询优化 七 视图.触发器.事务.存储过程.函数
- react性能优化要点
1.减少render方法的调用 1.1继承React.PureComponent(会自动在内部使用shouldComponentUpdate方法对state或props进行浅比较.)或在继承自Reac ...
- Java 之 MyBatis(一)入门
一.Mybatis 框架概述 (1)mybatis 是一个优秀的基于 java 的持久层框架,它内部封装了 jdbc,使开发者只需要关注 sql 语句本身,而不需要花费精力去处理加载驱动.创建连接.创 ...
- 【TBarCode SDK教程】TBarCode SDK 如何在 Microsoft Office 中工作?
使用条形码软件组件 TBarCode SDK,你可以在 Microsoft Office 中快速且简便地创建各种条形码.都不需要任何编程的技巧,只需要点击几次鼠标就可以将TBarCode SDK集成到 ...