洛谷 P3373 【模板】线段树 2 题解
P3373 【模板】线段树 2
题目描述
如题,已知一个数列,你需要进行下面三种操作:
1.将某区间每一个数乘上x
2.将某区间每一个数加上x
3.求出某区间每一个数的和
输入格式
第一行包含三个整数N、M、P,分别表示该数列数字的个数、操作的总个数和模数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含3或4个整数,表示一个操作,具体如下:
操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k
操作2: 格式:2 x y k 含义:将区间[x,y]内每个数加上k
操作3: 格式:3 x y 含义:输出区间[x,y]内每个数的和对P取模所得的结果
输出格式
输出包含若干行整数,即为所有操作3的结果。
输入输出样例
输入 #1
5 5 38
1 5 4 2 3
2 1 4 1
3 2 5
1 2 4 2
2 3 5 5
3 1 4
输出 #1
17
2
说明/提示
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=1000,M<=10000
对于100%的数据:N<=100000,M<=100000
(数据已经过加强_)
样例说明:

故输出应为17、2(40 mod 38=2)
【思路】
线段树
大部分的地方是和线段树1这道题一样的
我只在这里说一下不同的地方
【取模】
在每一次有加法或者有乘法
涉及到运算的地方能模的都模一下就好了
【乘法和加法】
原来线段树1模板里面有一个lazy
那是因为有加法这种运算
现在有加法和乘法这两种运算
那就开两个类似lazy的东西储存就好了
【lazy标记的修改】
在修改加法lazy标记的时候就正常修改就好了
但是修改乘法的时候就不行了
因为前面可能有加过的数
所以还要连带着一起修改一下加法的lazy标记
因为入过前面加过某个数
那现在就是
(a + b)
这个时候如果乘上一个数c
(a +b) * c = ac + bc
a乘了c,加法的lazy标记也乘了c所以要修改加法的标记
【完整代码】
#include<iostream>
#include<cstdio>
#define int long long
#define lson (k << 1)
#define rson (k << 1 | 1)
using namespace std;
const int Max = 100005;
int read()
{
int sum = 0,fg = 1;
char c = getchar();
while(c < '0' || c > '9')
{
if(c == '-')fg = -1;
c = getchar();
}
while(c >= '0' && c <= '9')
{
sum = sum * 10 + c - '0';
c = getchar();
}
return sum * fg;
}
int n,m,p;
int opl,opr,opx;
int ans;
struct node
{
int l,r;
int sum;
int cheng,jia;
}a[Max << 2];
void build(int k,int l,int r)
{
a[k].cheng = 1;
a[k].jia = 0;
a[k].l = l,a[k].r = r;
if(l == r)
{
a[k].sum = read();
a[k].sum %= p;
return;
}
int mid = (l + r) >> 1;
build(lson,l,mid);
build(rson,mid + 1,r);
a[k].sum = a[lson].sum + a[rson].sum;
a[k].sum %= p;
}
void down(int k)
{
if(a[k].jia != 0 || a[k].cheng != 1)
{
a[rson].cheng = (a[rson].cheng * a[k].cheng) % p;
a[lson].cheng = (a[lson].cheng * a[k].cheng) % p;
a[rson].jia = (a[rson].jia * a[k].cheng + a[k].jia) % p;
a[lson].jia = (a[lson].jia * a[k].cheng + a[k].jia) % p;
a[rson].sum = (a[rson].sum * a[k].cheng % p + a[k].jia * (a[rson].r - a[rson].l + 1)) % p;
a[lson].sum = (a[lson].sum * a[k].cheng % p + a[k].jia * (a[lson].r - a[lson].l + 1)) % p;
a[k].cheng = 1;
a[k].jia = 0;
}
}
void change1(int k)
{
if(opl <= a[k].l && opr >= a[k].r)
{
a[k].cheng = (a[k].cheng * opx) % p;
a[k].jia = (a[k].jia * opx) % p;
a[k].sum = (a[k].sum * opx) % p;
return;
}
down(k);
int mid = (a[k].l + a[k].r) >> 1;
if(opl <= mid)change1(lson);
if(opr > mid)change1(rson);
a[k].sum = (a[lson].sum + a[rson].sum) % p;
}
void change2(int k)
{
if(opl <= a[k].l && opr >= a[k].r)
{
a[k].jia = (a[k].jia + opx) % p;
a[k].sum = (a[k].sum + (a[k].r - a[k].l + 1) * opx % p) % p;
return;
}
down(k);
int mid = (a[k].l + a[k].r) >> 1;
if(opl <= mid)change2(lson);
if(opr > mid)change2(rson);
a[k].sum = (a[lson].sum + a[rson].sum) % p;
}
void query(int k)
{
if(opl <= a[k].l && opr >= a[k].r)
{
ans += a[k].sum;
ans %= p;
return;
}
down(k);
int mid = (a[k].l + a[k].r) >> 1;
if(opl <= mid)query(lson);
if(opr > mid)query(rson);
}
signed main()
{
n = read(),m = read(),p = read();
build(1,1,n);
for(register int i = 1;i <= m;++ i)
{
int qwq = read();
if(qwq == 1)
{
opl = read(),opr = read(),opx = read();
change1(1);
}
else
if(qwq == 2)
{
opl = read(),opr = read(),opx = read();
change2(1);
}
else
{
opl = read(),opr = read();
ans = 0;
query(1);
cout << ans % p << endl;
}
}
return 0;
}
洛谷 P3373 【模板】线段树 2 题解的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 线段树_区间加乘(洛谷P3373模板)
题目描述 如题,已知一个数列,你需要进行下面三种操作: 1.将某区间每一个数乘上x 2.将某区间每一个数加上x 3.求出某区间每一个数的和 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字 ...
- 洛谷 P2391 白雪皑皑 线段树+优化
题目描述: 现在有 \(N\) 片雪花排成一列. Pty 要对雪花进行$ M $次染色操作,第 \(i\)次染色操作中,把\((i*p+q)%N+1\) 片雪花和第\((i*q+p)%N+1\)片雪花 ...
- 洛谷P5280 [ZJOI2019]线段树
https://www.luogu.org/problemnew/show/P5280 省选的时候后一半时间开这题,想了接近两个小时的各种假做法,之后想的做法已经接近正解了,但是有一些细节问题理不 ...
- 洛谷 - P1198 - 最大数 - 线段树
https://www.luogu.org/problemnew/show/P1198 要问区间最大值,肯定是要用线段树的,不能用树状数组.(因为没有逆元?但是题目求的是最后一段,可以改成类似前缀和啊 ...
- 【洛谷】【线段树】P1471 方差
[题目背景:] 滚粗了的HansBug在收拾旧数学书,然而他发现了什么奇妙的东西. [题目描述:] 蒟蒻HansBug在一本数学书里面发现了一个神奇的数列,包含N个实数.他想算算这个数列的平均数和方差 ...
- 【洛谷】【线段树】P1047 校门外的树
[题目描述:] 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0,1,2,……,L ...
- 【洛谷】【线段树】P1886 滑动窗口
[题目描述:] 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. [输入格式:] 输入一共 ...
- 【洛谷】【线段树】P3353 在你窗外闪耀的星星
[题目描述:] /* 飞逝的的时光不会模糊我对你的记忆.难以相信从我第一次见到你以来已经过去了3年.我仍然还生动地记得,3年前,在美丽的集美中学,从我看到你微笑着走出教室,你将头向后仰,柔和的晚霞照耀 ...
- 洛谷P3374(线段树)(询问区间和,支持单点修改)
洛谷P3374 //询问区间和,支持单点修改 #include <cstdio> using namespace std; ; struct treetype { int l,r,sum; ...
随机推荐
- Docker修改已创建容器端口映射
修改已创建容器端口映射. 通过编辑 hostconfig.json 文件来修改 Docker 容器的端口映射 该文件地址:/var/lib/docker/containers/[hash_of_the ...
- Android开发中网络代理设置实用总结
一.背景 进行Android项目开发时,跟网络代理基本上天天都在打交道.通常情况下,至少有三个场景中经常用到网络代理: 1,经常通过Chrome访问Google等国外的技术网站,如通过SS工具等: 2 ...
- Portainer容器可视化管理工具使用文档
本文内容 主要介绍下Portainer的Docker使用方式,基于当前最新版v1.22.1,使用Docker的本地部署,并连接另一台服务器进行测试,更多请参考官网https://www.portain ...
- CSS之flex布局和边框阴影
flex布局 main axis:主轴:cross axis:交叉轴 容器的子元素自动成为容器成员,成为flex 项目(item) flex容器属性 flex-direction 该属性决定主轴的 ...
- 数据库IN查询参数化改造的方法
// 批量查询的 2019-05-14 if (!string.IsNullOrWhiteSpace(Request["userCodes"])) { string userCod ...
- 深入理解 Kubernetes 资源限制:CPU
原文地址:https://www.yangcs.net/posts/understanding-resource-limits-in-kubernetes-cpu-time/ 在关于 Kubernet ...
- PIE SDK 基于Dot net bar实现比例尺控件
最近在搭建主界面的过程中,为了界面美观大方,使用了Dot net bar.但是,在Dot net bar的状态栏中放置PIE SDK自带的比例尺控件,运行主界面程序后,比例尺控件始终不显示比例尺信息, ...
- golang下载图片,而非预览
1 前言 网上查询使用html5,a增加属性download和使用表单get,post提交,都是只能预览,根本原因是返回值需要加入头 w.Header().Add("Content-Type ...
- 万张PubFig人脸数据实现基于python+OpenCV的人脸特征定位程序(1)
在最近刷今日头条以及其他媒体软件时,经常会发现一些AI换脸的视频,于是我想,可不可以自己实现一个可以进行人脸识别的软件程序.我的具体流程是先配合python网络爬虫先进行万张PubFig人脸公共图片的 ...
- PAT 1024 科学记数法
PAT 1024 科学记数法 科学计数法是科学家用来表示很大或很小的数字的一种方便的方法,其满足正则表达式 [+-][1-9].[0-9]+E[+-][0-9]+,即数字的整数部分只有 1 位,小数部 ...