洛谷 P3373 【模板】线段树 2 题解
P3373 【模板】线段树 2
题目描述
如题,已知一个数列,你需要进行下面三种操作:
1.将某区间每一个数乘上x
2.将某区间每一个数加上x
3.求出某区间每一个数的和
输入格式
第一行包含三个整数N、M、P,分别表示该数列数字的个数、操作的总个数和模数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含3或4个整数,表示一个操作,具体如下:
操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k
操作2: 格式:2 x y k 含义:将区间[x,y]内每个数加上k
操作3: 格式:3 x y 含义:输出区间[x,y]内每个数的和对P取模所得的结果
输出格式
输出包含若干行整数,即为所有操作3的结果。
输入输出样例
输入 #1
5 5 38
1 5 4 2 3
2 1 4 1
3 2 5
1 2 4 2
2 3 5 5
3 1 4
输出 #1
17
2
说明/提示
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=1000,M<=10000
对于100%的数据:N<=100000,M<=100000
(数据已经过加强_)
样例说明:

故输出应为17、2(40 mod 38=2)
【思路】
线段树
大部分的地方是和线段树1这道题一样的
我只在这里说一下不同的地方
【取模】
在每一次有加法或者有乘法
涉及到运算的地方能模的都模一下就好了
【乘法和加法】
原来线段树1模板里面有一个lazy
那是因为有加法这种运算
现在有加法和乘法这两种运算
那就开两个类似lazy的东西储存就好了
【lazy标记的修改】
在修改加法lazy标记的时候就正常修改就好了
但是修改乘法的时候就不行了
因为前面可能有加过的数
所以还要连带着一起修改一下加法的lazy标记
因为入过前面加过某个数
那现在就是
(a + b)
这个时候如果乘上一个数c
(a +b) * c = ac + bc
a乘了c,加法的lazy标记也乘了c所以要修改加法的标记
【完整代码】
#include<iostream>
#include<cstdio>
#define int long long
#define lson (k << 1)
#define rson (k << 1 | 1)
using namespace std;
const int Max = 100005;
int read()
{
int sum = 0,fg = 1;
char c = getchar();
while(c < '0' || c > '9')
{
if(c == '-')fg = -1;
c = getchar();
}
while(c >= '0' && c <= '9')
{
sum = sum * 10 + c - '0';
c = getchar();
}
return sum * fg;
}
int n,m,p;
int opl,opr,opx;
int ans;
struct node
{
int l,r;
int sum;
int cheng,jia;
}a[Max << 2];
void build(int k,int l,int r)
{
a[k].cheng = 1;
a[k].jia = 0;
a[k].l = l,a[k].r = r;
if(l == r)
{
a[k].sum = read();
a[k].sum %= p;
return;
}
int mid = (l + r) >> 1;
build(lson,l,mid);
build(rson,mid + 1,r);
a[k].sum = a[lson].sum + a[rson].sum;
a[k].sum %= p;
}
void down(int k)
{
if(a[k].jia != 0 || a[k].cheng != 1)
{
a[rson].cheng = (a[rson].cheng * a[k].cheng) % p;
a[lson].cheng = (a[lson].cheng * a[k].cheng) % p;
a[rson].jia = (a[rson].jia * a[k].cheng + a[k].jia) % p;
a[lson].jia = (a[lson].jia * a[k].cheng + a[k].jia) % p;
a[rson].sum = (a[rson].sum * a[k].cheng % p + a[k].jia * (a[rson].r - a[rson].l + 1)) % p;
a[lson].sum = (a[lson].sum * a[k].cheng % p + a[k].jia * (a[lson].r - a[lson].l + 1)) % p;
a[k].cheng = 1;
a[k].jia = 0;
}
}
void change1(int k)
{
if(opl <= a[k].l && opr >= a[k].r)
{
a[k].cheng = (a[k].cheng * opx) % p;
a[k].jia = (a[k].jia * opx) % p;
a[k].sum = (a[k].sum * opx) % p;
return;
}
down(k);
int mid = (a[k].l + a[k].r) >> 1;
if(opl <= mid)change1(lson);
if(opr > mid)change1(rson);
a[k].sum = (a[lson].sum + a[rson].sum) % p;
}
void change2(int k)
{
if(opl <= a[k].l && opr >= a[k].r)
{
a[k].jia = (a[k].jia + opx) % p;
a[k].sum = (a[k].sum + (a[k].r - a[k].l + 1) * opx % p) % p;
return;
}
down(k);
int mid = (a[k].l + a[k].r) >> 1;
if(opl <= mid)change2(lson);
if(opr > mid)change2(rson);
a[k].sum = (a[lson].sum + a[rson].sum) % p;
}
void query(int k)
{
if(opl <= a[k].l && opr >= a[k].r)
{
ans += a[k].sum;
ans %= p;
return;
}
down(k);
int mid = (a[k].l + a[k].r) >> 1;
if(opl <= mid)query(lson);
if(opr > mid)query(rson);
}
signed main()
{
n = read(),m = read(),p = read();
build(1,1,n);
for(register int i = 1;i <= m;++ i)
{
int qwq = read();
if(qwq == 1)
{
opl = read(),opr = read(),opx = read();
change1(1);
}
else
if(qwq == 2)
{
opl = read(),opr = read(),opx = read();
change2(1);
}
else
{
opl = read(),opr = read();
ans = 0;
query(1);
cout << ans % p << endl;
}
}
return 0;
}
洛谷 P3373 【模板】线段树 2 题解的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 线段树_区间加乘(洛谷P3373模板)
题目描述 如题,已知一个数列,你需要进行下面三种操作: 1.将某区间每一个数乘上x 2.将某区间每一个数加上x 3.求出某区间每一个数的和 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字 ...
- 洛谷 P2391 白雪皑皑 线段树+优化
题目描述: 现在有 \(N\) 片雪花排成一列. Pty 要对雪花进行$ M $次染色操作,第 \(i\)次染色操作中,把\((i*p+q)%N+1\) 片雪花和第\((i*q+p)%N+1\)片雪花 ...
- 洛谷P5280 [ZJOI2019]线段树
https://www.luogu.org/problemnew/show/P5280 省选的时候后一半时间开这题,想了接近两个小时的各种假做法,之后想的做法已经接近正解了,但是有一些细节问题理不 ...
- 洛谷 - P1198 - 最大数 - 线段树
https://www.luogu.org/problemnew/show/P1198 要问区间最大值,肯定是要用线段树的,不能用树状数组.(因为没有逆元?但是题目求的是最后一段,可以改成类似前缀和啊 ...
- 【洛谷】【线段树】P1471 方差
[题目背景:] 滚粗了的HansBug在收拾旧数学书,然而他发现了什么奇妙的东西. [题目描述:] 蒟蒻HansBug在一本数学书里面发现了一个神奇的数列,包含N个实数.他想算算这个数列的平均数和方差 ...
- 【洛谷】【线段树】P1047 校门外的树
[题目描述:] 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0,1,2,……,L ...
- 【洛谷】【线段树】P1886 滑动窗口
[题目描述:] 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. [输入格式:] 输入一共 ...
- 【洛谷】【线段树】P3353 在你窗外闪耀的星星
[题目描述:] /* 飞逝的的时光不会模糊我对你的记忆.难以相信从我第一次见到你以来已经过去了3年.我仍然还生动地记得,3年前,在美丽的集美中学,从我看到你微笑着走出教室,你将头向后仰,柔和的晚霞照耀 ...
- 洛谷P3374(线段树)(询问区间和,支持单点修改)
洛谷P3374 //询问区间和,支持单点修改 #include <cstdio> using namespace std; ; struct treetype { int l,r,sum; ...
随机推荐
- Balking模式
Balking模式讲的是如果现在不合适执行这个操作,或者没必要执行这个操作,就停止处理,直接返回 自动保存功能的实现逻辑一般都是隔一定时间自动执行存盘操作,存盘操作的前提是文件做过修改,如果文件没有执 ...
- Spring Boot 如何干掉 if else?
需求 这里虚拟一个业务需求,让大家容易理解.假设有一个订单系统,里面的一个功能是根据订单的不同类型作出不同的处理. 订单实体: service接口: 传统实现 根据订单类型写一堆的if else: 策 ...
- centos安装sftp服务
一.创建sftp服务数据目录及相关测试用户 [root@localhost ~]# mkdir -pv /data/sftp/ #sftp数据目录 [root@localhost ~]# chown ...
- 关于宝塔面板windows版6.2的一些使用心得
关于宝塔面板windows版6.2的一些使用心得 第一次使用windows版本的 给客户搭建 asp+mssql的需求 心得1 安装 server2012 基于python开发的,所以安装的 ...
- eclipse自定义导入或者编写版本格式化 xml
1.自定义或者自己导入版本格式 window——preferences——java——Code style ——formatter(New 或者 import)
- Java诊断利器Arthas优雅排查生产环境
前言 Arthas 是Alibaba开源的Java诊断工具.在线排查问题,无需重启:动态跟踪Java代码:实时监控JVM状态.对分秒必争的线上异常,Arthas可帮助我们快速诊断相关问题. 下载安装 ...
- Python Lab Assignments
引用: https://github.com/saismaran33/Python-Lab-Assignments/wiki/Python-Lab-Assignment-2 Lab 1 对于任何Web ...
- 分析mybatis中 #{} 和${}的区别
分析方法: 在 GenericTokenParser这个类的parse方法的这一行下个断点调试一下就明白了 builder.append(handler.handleToken(content)); ...
- 【转载】Gradle学习 第六章:构建脚本基础
转载地址:http://ask.android-studio.org/?/article/11 6.1. Projects and tasks 项目和任务Everything in Gradle si ...
- 5种处理Vue异常的方法
原文: Handling Errors in Vue.js 译者: Fundebug 本文采用意译,版权归原作者所有 去年一整年,我都在使用最爱的-Vue.js- 来做项目.最近突然意识到,我竟然从来 ...