[JLOI2015]装备购买



$ solution: $

首先这道题的题面已经非常清晰的告诉我们这就是线性空间高斯消元的一道题(可以用某些装备来表示另一件装备,这已经不能再明显了),只是这道题要求我们求出花费最小的方案,这个我们可以直接贪心,如果有多个装备可以匹配某一个属性,那么我们选价值最小的那一个(这个可以用线性空间的定义证明),价值大的尽量往后再选(选到最后剩下一些价格大的不买即可)



$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int using namespace std; const db cha=1e-4; struct su{
db a[505];
int v;
inline bool operator <(su y){return v<y.v;}
}g[505]; int n,m,tot,ans;
int b[505]; inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=qr(); m=qr();
for(rg i=1;i<=n;++i)
for(rg j=1;j<=m;++j)
g[i].a[j]=qr();
for(rg i=1;i<=n;++i)
g[i].v=qr();
sort(g+1,g+n+1);
for(rg i=1;i<=n;++i){
for(rg j=1;j<=m;++j){
if(fabs(g[i].a[j])>cha){
if(!b[j]){
b[j]=i;++tot;
ans+=g[i].v;
break;
}else{
db d=g[i].a[j]/g[b[j]].a[j];
for(rg k=j;k<=m;++k)
g[i].a[k]-=g[b[j]].a[k]*d;
}
}
}
}printf("%d %d\n",tot,ans);
return 0;
}

[JLOI2015]装备购买 (高斯消元)的更多相关文章

  1. BZOJ 4004 JLOI2015 装备购买 高斯消元+线性基

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4004 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装 ...

  2. BZOJ 4004: [JLOI2015]装备购买 [高斯消元同余 线性基]

    和前两(一)题一样,不过不是异或方程组了..... 然后bzoj的新数据是用来卡精度的吧..... 所有只好在模意义下做啦 只是巨慢无比 #include <iostream> #incl ...

  3. BZOJ 4004: [JLOI2015]装备购买 高斯消元解线性基

    BZOJ严重卡精,要加 $long$  $double$ 才能过. 题意:求权和最小的极大线性无关组. 之前那个方法解的线性基都是基于二进制拆位的,这次不行,现在要求一个适用范围更广的方法. 考虑贪心 ...

  4. 【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元

    [BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 ( ...

  5. 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基

    题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...

  6. 【bzoj4004】【JLOI2015】装备购买 (线性基+高斯消元)

    Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 < ...

  7. P3265 [JLOI2015]装备购买(高斯消元+贪心,线性代数)

    题意; 有n个装备,每个装备有m个属性,每件装备的价值为cost. 小哥,为了省钱,如果第j个装备的属性可以由其他准备组合而来.比如 每个装备属性表示为, b1, b2.......bm . 它可以由 ...

  8. 洛谷P3265 [JLOI2015]装备购买(线性基+高斯消元)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 不难看出题目讲的就是线性基 这种最小化权值的问题一般都是贪心的,就是按价值从低到高考虑每一个是否能选 据说贪心的证明得用拟阵我不会 据说这题是实数意 ...

  9. AcWing 209. 装备购买 (高斯消元线性空间)打卡

    脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量z[i]=(ai,1,ai,2,..,ai,m)z[i]=(ai,1,ai,2,..,ai,m) 表示,每个装备需要 ...

随机推荐

  1. Conjugate Function

    共轭函数 共轭函数的定义: 设函数f:Rn→R,定义函数f∗:Rn→R为: f∗(y)=sup(<y,x>−f(x))  x∈D 此函数称为函数f的共轭函数.即函数yx和函数f(x)之间差 ...

  2. Layui_HDFS目录(上传,下载,删除,分页,下级目录,键盘控制返回上一页)

    注:转载请署名 一.实体 package com.ebd.application.modules.fileManage.pojo; public class FilesOrDirs { private ...

  3. BZOJ5311 贞鱼(动态规划+wqs二分+决策单调性)

    大胆猜想答案随k变化是凸函数,且有决策单调性即可.去粘了份fread快读板子才过. #include<iostream> #include<cstdio> #include&l ...

  4. LOJ115 无源汇有上下界可行流(上下界网络流)

    假设初始流为每条边的下界.但这样可能流量会不守恒,我们需要在上面加上一个附加流使流量守恒.只要让每个点开始的出/入流量与原初始流相等就可以求出附加流了.那么新建超源S超汇T,令degree[i]表示流 ...

  5. 【Linux】Centos6.8下一键安装Lnmp/Lamp环境

    [下载一键安装软件包] 百度云地址:https://pan.baidu.com/s/1TZqGKtE-46gxW96Ptfp4gA 网址:https://lnmp.org/ [步骤] 通过第三方远程工 ...

  6. Play on Words HDU - 1116(欧拉路判断 + 并查集)

    题意: 给出几个单词,求能否用所有的单词成语接龙 解析: 把每个单词的首字母和尾字母分别看作两个点u 和 v,输入每个单词后,u的出度++, v的入度++ 最后判断是否能组成欧拉路径 或 欧拉回路,当 ...

  7. Java递归删除目录下所有的txt文件

    public static void delAllFile(File path) { if (!path.exists() || !path.isDirectory()) { //不是目录 retur ...

  8. MT【238】内心轨迹

    已知$F_1,F_2$为椭圆$C:\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$的左右焦点,点$P$在椭圆$C$上移动时,$\Delta{F_1PF_2}$的内心$I$的轨迹方程为_ ...

  9. 点分治模板(洛谷P4178 Tree)(树分治,树的重心,容斥原理)

    推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径 ...

  10. 自学Python5.2-类和对象概念

    自学Python之路 自学Python5.2-类和对象概念 面向对象编程的2个非常重要的概念:类和对象 对象是面向对象编程的核心: 在使用对象的过程中,为了将具有共同特征和行为的一组对象抽象定义,提出 ...