problem1 link

令$f[x1][y1][x2][y2]$表示矩形(x1,y1)(x2,y2)中能选出的最大值。dp即可。

problem2 link

这个题应该有更好的递推公式。

我的做法是这样的。设$f[i]$表示$i$时的答案,令$g[i]=f[i]-f[i-1]$。通过暴力计算$g$的前几项,发现$g$的公式为

$g(n+2)=a(n)=\frac{(2n+3)*(6n^4+36n^3+76n^2+66n+5)}{960}-\frac{(-1)^n}{64}$

problem3 link

由于对于一个节点,其对于某一种tree只能选择至多一次,因此可以对每种tree依次进行处理。

对于tree的某一种,找到target中与其同构的所有子树,然后进行dp即可。 设$f[mask]$将$mask$对应的边反转的最小代价。

code for problem1

import java.util.*;
import java.math.*;
import static java.lang.Math.*; public class DonutsOnTheGridEasy { public int calc(String[] grid) {
final int n = grid.length;
final int m = grid[0].length();
if (n < 3 || m < 3) {
return 0;
}
int[][] h = new int[n + 1][m + 1];
int[][] v = new int[n + 1][m + 1];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
h[i + 1][j + 1] = h[i + 1][j];
if (grid[i].charAt(j) == '0') {
h[i + 1][j + 1] += 1;
}
}
}
for (int j = 0; j < m; ++j) {
for (int i = 0; i < n; ++i) {
v[i + 1][j + 1] = v[i][j + 1];
if (grid[i].charAt(j) == '0') {
v[i + 1][j + 1] += 1;
}
}
}
int[][][][] f = new int[n + 1][m + 1][n + 1][m + 1];
for (int height = 3; height <= n; ++ height) {
for (int width = 3; width <= m; ++ width) {
for (int i = 1; i + height -1 <= n; ++ i) {
for (int j = 1; j + width -1 <= m; ++ j) {
int i1 = i + height - 1;
int j1 = j + width -1; f[i][j][i1][j1]= Math.max(f[i][j][i1][j1], f[i + 1][j][i1][j1]);
f[i][j][i1][j1]= Math.max(f[i][j][i1][j1], f[i][j][i1 - 1][j1]);
f[i][j][i1][j1]= Math.max(f[i][j][i1][j1], f[i][j + 1][i1][j1]);
f[i][j][i1][j1]= Math.max(f[i][j][i1][j1], f[i][j][i1][j1 - 1]); if (!check(i, j, i1, j1, h, v)) {
continue;
}
f[i][j][i1][j1]= Math.max(f[i][j][i1][j1], f[i + 1][j + 1][i1 - 1][j1 - 1] + 1);
}
}
}
}
return f[1][1][n][m];
} boolean check(int x1, int y1, int x2, int y2, int[][] h, int[][] v) {
return h[x1][y2] - h[x1][y1 - 1] == y2 - y1 + 1
&& h[x2][y2] - h[x2][y1 - 1] == y2 - y1 + 1
&& v[x2][y1] - v[x1 - 1][y1] == x2 - x1 + 1
&& v[x2][y2] - v[x1 - 1][y2] == x2 - x1 + 1;
}
}

  

code for problem2

import java.util.*;
import java.math.*;
import static java.lang.Math.*; public class ConvexHexagons { final static int mod = 1000000007;
final static long rev960 = pow(960, mod - 2);
final static long rev64 = pow(64, mod - 2); public int find(int N) {
if (N < 3) {
return 0;
}
int ans = 0;
for (int i = 3; i <= N; ++i) {
ans += cal(i - 2);
ans %= mod;
}
return ans;
} static long pow(long a, long b) {
a %= mod;
long ans = 1;
while (b > 0) {
if (1 == (b & 1)) {
ans = ans * a % mod;
}
a = a * a % mod;
b >>= 1;
}
return ans;
} long cal(long n) {
long A = (2 * n + 3) % mod;
long B = (6 * pow(n, 4) + 36 * pow(n, 3) + 76 * pow(n, 2) + 66 * n + 5) % mod;
long ans = A * B % mod * rev960 % mod;
if (1 == (n & 1)) {
ans += rev64;
}
else {
ans -= rev64;
}
ans %= mod;
if (ans < 0) {
ans += mod;
}
return ans;
} }

  

code for problem3

import java.util.*;

public class ActivateTree {

	List<Edge> alledges = null;
List<Edge> currentTree = null;
List<List<Integer>> mask = new ArrayList<>();
boolean[] visited = null; public int minCost(String[] trees, String target, int[] costs) {
alledges = getEdges(target); int n = 0;
for (int i = 0; i < alledges.size(); ++ i) {
n = Math.max(n, alledges.get(i).x + 1);
n = Math.max(n, alledges.get(i).y + 1);
} for (int i = 0; i < n; ++ i) {
mask.add(new ArrayList<>());
} final int m = alledges.size();
int[][] f = new int[2][1 << m];
Arrays.fill(f[0], -1);
visited = new boolean[m];
f[0][0] = 0;
for (int i = 0; i < trees.length; ++ i) {
currentTree = getEdges(trees[i]);
for (int j = 0; j < n; ++ j) {
mask.get(j).clear();
}
dfs(0, new int[currentTree.size()]); for (int u = 0; u < n; ++ u) {
for (int j = 0; j < (1 << m); ++ j) {
f[1][j] = f[0][j];
}
for (int s = 0; s < (1 << m); ++ s) {
for (int t: mask.get(u)) {
if (f[1][s ^ t] != -1) {
if (f[0][s] == -1 || f[0][s] > f[1][s ^ t] + costs[i]) {
f[0][s] = f[1][s ^ t] + costs[i];
}
}
}
}
}
}
return f[0][(1 << m) - 1];
} Map<Integer,Integer> map0 = new HashMap<>();
Map<Integer,Integer> map1 = new HashMap<>(); void dfs(int id, int[] ch) {
if (id == currentTree.size()) {
int st = 0;
for (int i : ch) {
st |= 1 << i;
}
int rt = alledges.get(ch[0]).x;
while (true) {
boolean tag = false;
for (int i = 0; i < ch.length; ++ i) {
if (alledges.get(ch[i]).y == rt) {
rt = alledges.get(ch[i]).x;
tag = true;
break;
}
}
if (!tag) {
break;
}
}
if (mask.get(rt).contains(st)) {
return;
} map0.clear();
map1.clear();
for (int i = 0; i < ch.length; ++ i) {
int x = alledges.get(ch[i]).x;
int y = alledges.get(ch[i]).y;
int xx = currentTree.get(i).x;
int yy = currentTree.get(i).y;
for (int j = 0; j < 2; ++ j) {
int u = (j == 0)? x : y;
int v = (j == 0)? xx : yy;
if (map0.containsKey(u)) {
if (map0.get(u) != v) {
return;
}
if (!map1.containsKey(v) || map1.get(v) != u) {
return;
}
}
else {
if (map1.containsKey(v)) {
return;
}
map0.put(u, v);
map1.put(v, u);
}
}
} mask.get(rt).add(st);
return;
}
for (int i = 0; i < alledges.size(); ++ i) {
if (!visited[i]) {
visited[i] = true;
ch[id] = i;
dfs(id + 1, ch);
visited[i] = false;
}
}
} static List<Edge> getEdges(String target) {
List<Edge> result = new ArrayList<>();
String[] all = target.split("\\s+"); for (int i = 1; i < all.length; ++ i) {
int p = Integer.valueOf(all[i]);
result.add(new Edge(p, i));
}
return result;
} static class Edge {
int x, y;
Edge() {}
Edge(int x, int y) {
this.x = x;
this.y = y;
}
}
}

  

topcoder srm 455 div1的更多相关文章

  1. Topcoder SRM 643 Div1 250<peter_pan>

    Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...

  2. Topcoder Srm 726 Div1 Hard

    Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...

  3. topcoder srm 714 div1

    problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x) ...

  4. topcoder srm 738 div1 FindThePerfectTriangle(枚举)

    Problem Statement      You are given the ints perimeter and area. Your task is to find a triangle wi ...

  5. Topcoder SRM 602 div1题解

    打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...

  6. Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串

    Problem Statement      The Happy Letter game is played as follows: At the beginning, several players ...

  7. Topcoder SRM 584 DIV1 600

    思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...

  8. TopCoder SRM 605 DIV1

    604的题解还没有写出来呢.先上605的. 代码去practice房间找. 说思路. A: 贪心,对于每个类型的正值求和,如果没有正值就取最大值,按着求出的值排序,枚举选多少个类型. B: 很明显是d ...

  9. topcoder srm 575 div1

    problem1 link 如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$ 通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其 ...

随机推荐

  1. python文件基础IO,OS

    #!/usr/bin/python # -*- coding: UTF-8 -*- import os # 导入 Phone 包 #File 对象方法: file对象提供了操作文件的一系列方法. #O ...

  2. maven下载和安装

    注意:安装Maven3之前需要安装jdk1.7以上版本,下面介绍的是最新版Maven官网下载并安装, 每个人使用的编辑器不同,在这里我就不介绍了,可以去网上查对应编辑器Maven配置方法. 第一步,官 ...

  3. 未能正确加载“EditorPackage”包(转)

    打开vs2012加载项目的时候报如下的错误: 未能正确加载“Microsoft.VisualStudio.Editor.Implementation.EditorPackage”包.此问题可能是由配置 ...

  4. Yii2 nginx配置伪静态

    Yii2 配置 Nginx 伪静态 主要检查以下代码: location / { # Redirect everything that isn't a real file to index.php t ...

  5. php实现多进程

    转:http://www.jb51.net/article/71238.htm cd php-version/ext/pcntl phpize ./configure && make ...

  6. JOptionPane

    2018-10-30 14:44:43 开始写 作者:tjk123456 来源:CSDN 原文链接 建议阅读官方资料:https://docs.oracle.com/javase/7/docs/api ...

  7. Visual Assist 10.9.2248 破解版(支持VS2017)

    [1]下载安装包 下载地址:https://download.csdn.net/download/qq_20044811/10597708 [2]安装与破解方法 第一步:关闭VS所有打开窗体 第二步: ...

  8. 创建 .m2 文件夹

    首次使用 Maven 创建 .m2 文件夹 1. cmd2. mvn help:system

  9. CachedIntrospectionResults 初始化

  10. FileInputstream,FileOutputstream 和 byteArrayInputStream,byteArrayOutputStream

    你知道FileInputstream和FileOutputstream吗?FileInputstream,FileOutputstream分别是由抽象类Inputstream和Outputstream ...