Flink - Asynchronous I/O
https://docs.google.com/document/d/1Lr9UYXEz6s6R_3PWg3bZQLF3upGaNEkc0rQCFSzaYDI/edit
// create the original stream
DataStream<String> stream = ...; // apply the async I/O transformation
DataStream<Tuple2<String, String>> resultStream =
AsyncDataStream.unorderedWait(stream, new AsyncDatabaseRequest(), 1000, TimeUnit.MILLISECONDS, 100);
AsyncDataStream
有一组接口,
unorderedWait
orderedWait
最终都是调用到,
addOperator(in, func, timeUnit.toMillis(timeout), capacity, OutputMode.ORDERED)
是否是ordered,只是最后一个参数不同
private static <IN, OUT> SingleOutputStreamOperator<OUT> addOperator(
DataStream<IN> in,
AsyncFunction<IN, OUT> func,
long timeout,
int bufSize,
OutputMode mode) { TypeInformation<OUT> outTypeInfo =
TypeExtractor.getUnaryOperatorReturnType(func, AsyncFunction.class, false,
true, in.getType(), Utils.getCallLocationName(), true); // create transform
AsyncWaitOperator<IN, OUT> operator = new AsyncWaitOperator<>(
in.getExecutionEnvironment().clean(func),
timeout,
bufSize,
mode); return in.transform("async wait operator", outTypeInfo, operator);
}
AsyncWaitOperator
setup主要是初始化,任务队列
@Override
public void setup(StreamTask<?, ?> containingTask, StreamConfig config, Output<StreamRecord<OUT>> output) {
super.setup(containingTask, config, output); // create the operators executor for the complete operations of the queue entries
this.executor = Executors.newSingleThreadExecutor(); //单线程的Executor,用于处理队列 switch (outputMode) {
case ORDERED:
queue = new OrderedStreamElementQueue(
capacity,
executor,
this);
break;
case UNORDERED:
queue = new UnorderedStreamElementQueue(
capacity,
executor,
this);
break;
default:
throw new IllegalStateException("Unknown async mode: " + outputMode + '.');
}
}
看下,OrderedStreamElementQueue
public class OrderedStreamElementQueue implements StreamElementQueue {
/** Queue for the inserted StreamElementQueueEntries. */
private final ArrayDeque<StreamElementQueueEntry<?>> queue; //放所有的element
@Override
public AsyncResult peekBlockingly() throws InterruptedException { //取
lock.lockInterruptibly();
try {
while (queue.isEmpty() || !queue.peek().isDone()) { //如果queue的第一个element没有完成
headIsCompleted.await(); //等锁,等他完成
}
return queue.peek(); //如果完成就peek出来,注意peek是不会移除这个element的,所以需要poll
} finally {
lock.unlock();
}
}
@Override
public AsyncResult poll() throws InterruptedException { //单独做poll
lock.lockInterruptibly();
try {
while (queue.isEmpty() || !queue.peek().isDone()) { //如果第一个没完成,等待
headIsCompleted.await();
}
notFull.signalAll(); //poll后,队列一定不满,所以解锁notFull
return queue.poll();
} finally {
lock.unlock();
}
}
private <T> void addEntry(StreamElementQueueEntry<T> streamElementQueueEntry) { //put,tryput都是调用这个
queue.addLast(streamElementQueueEntry); //加到queue里面
streamElementQueueEntry.onComplete(new AcceptFunction<StreamElementQueueEntry<T>>() { //给element加上complete的callback,调用onCompleteHandler
@Override
public void accept(StreamElementQueueEntry<T> value) {
try {
onCompleteHandler(value);
}
}
}, executor);
}
private void onCompleteHandler(StreamElementQueueEntry<?> streamElementQueueEntry) throws InterruptedException {
lock.lockInterruptibly();
try {
if (!queue.isEmpty() && queue.peek().isDone()) {
headIsCompleted.signalAll(); //放开锁,告诉大家我完成了
}
} finally {
lock.unlock();
}
}
}
对于queue主要就是,读取操作
这里取是分两步,先peek,再poll
open,主要是处理从snapshot中恢复的数据
并启动emiter
@Override
public void open() throws Exception {
super.open(); // process stream elements from state, since the Emit thread will start as soon as all
// elements from previous state are in the StreamElementQueue, we have to make sure that the
// order to open all operators in the operator chain proceeds from the tail operator to the
// head operator.
if (recoveredStreamElements != null) {
for (StreamElement element : recoveredStreamElements.get()) { //处理从snapshot中恢复出的element
if (element.isRecord()) {
processElement(element.<IN>asRecord());
}
else if (element.isWatermark()) {
processWatermark(element.asWatermark());
}
else if (element.isLatencyMarker()) {
processLatencyMarker(element.asLatencyMarker());
}
else {
throw new IllegalStateException("Unknown record type " + element.getClass() +
" encountered while opening the operator.");
}
}
recoveredStreamElements = null;
} // create the emitter
this.emitter = new Emitter<>(checkpointingLock, output, queue, this); //创建Emitter // start the emitter thread
this.emitterThread = new Thread(emitter, "AsyncIO-Emitter-Thread (" + getOperatorName() + ')');
emitterThread.setDaemon(true);
emitterThread.start(); }
Emitter
@Override
public void run() {
try {
while (running) {
LOG.debug("Wait for next completed async stream element result.");
AsyncResult streamElementEntry = streamElementQueue.peekBlockingly(); output(streamElementEntry);
}
从queue中peek数据,对于上面OrderedStreamElementQueue,只有完成的数据会被peek到
private void output(AsyncResult asyncResult) throws InterruptedException {
if (asyncResult.isWatermark()) {
//......
} else {
AsyncCollectionResult<OUT> streamRecordResult = asyncResult.asResultCollection();
synchronized (checkpointLock) { //collect数据需要加checkpoint锁
LOG.debug("Output async stream element collection result.");
try {
Collection<OUT> resultCollection = streamRecordResult.get();
if (resultCollection != null) {
for (OUT result : resultCollection) {
timestampedCollector.collect(result); //真正emit数据
}
}
}
// remove the peeked element from the async collector buffer so that it is no longer
// checkpointed
streamElementQueue.poll(); //emit完可以将数据从queue中删除
// notify the main thread that there is again space left in the async collector
// buffer
checkpointLock.notifyAll();
}
}
}
可以看到当数据被emit后,才会从queue删除掉
processElement
@Override
public void processElement(StreamRecord<IN> element) throws Exception {
final StreamRecordQueueEntry<OUT> streamRecordBufferEntry = new StreamRecordQueueEntry<>(element); //封装成StreamRecordQueueEntry if (timeout > 0L) {
// register a timeout for this AsyncStreamRecordBufferEntry
long timeoutTimestamp = timeout + getProcessingTimeService().getCurrentProcessingTime(); final ScheduledFuture<?> timerFuture = getProcessingTimeService().registerTimer( //开个定时器,到时间就会colloct一个超时异常
timeoutTimestamp,
new ProcessingTimeCallback() {
@Override
public void onProcessingTime(long timestamp) throws Exception {
streamRecordBufferEntry.collect(
new TimeoutException("Async function call has timed out."));
}
}); // Cancel the timer once we've completed the stream record buffer entry. This will remove
// the register trigger task
streamRecordBufferEntry.onComplete(new AcceptFunction<StreamElementQueueEntry<Collection<OUT>>>() { //在StreamRecordQueueEntry完成是触发删除这个定时器,这样就只有未完成的会触发定时器
@Override
public void accept(StreamElementQueueEntry<Collection<OUT>> value) {
timerFuture.cancel(true);
}
}, executor);
} addAsyncBufferEntry(streamRecordBufferEntry); //把StreamRecordQueueEntry加到queue中去 userFunction.asyncInvoke(element.getValue(), streamRecordBufferEntry); //调用用户定义的asyncInvoke
}
StreamRecordQueueEntry
public class StreamRecordQueueEntry<OUT> extends StreamElementQueueEntry<Collection<OUT>>
implements AsyncCollectionResult<OUT>, AsyncCollector<OUT> { /** Future containing the collection result. */
private final CompletableFuture<Collection<OUT>> resultFuture; @Override
public void collect(Collection<OUT> result) {
resultFuture.complete(result);
} @Override
public void collect(Throwable error) {
resultFuture.completeExceptionally(error);
}
}
前面在emitter里面判断,entry是否做完就看,resultFuture是否isDone
可以看到resultFuture只有在collect的时候才会被complete
当resultFuture.complete时,onComplete callback会被触发,
这个callback在OrderedStreamElementQueue.addEntry被注册上来,做的事也就是告诉大家headIsCompleted;这样随后Emitter可以把结果数据emit出去
最终调用到用户定义的,
userFunction.asyncInvoke
@Override
public void asyncInvoke(final String str, final AsyncCollector<Tuple2<String, String>> asyncCollector) throws Exception { // issue the asynchronous request, receive a future for result
Future<String> resultFuture = client.query(str); // set the callback to be executed once the request by the client is complete
// the callback simply forwards the result to the collector
resultFuture.thenAccept( (String result) -> { asyncCollector.collect(Collections.singleton(new Tuple2<>(str, result))); });
}
}
首先client必须是异步的,如果不是,没法返回Future,那需要自己用连接池实现
主要逻辑就是在resultFuture完成后,调用asyncCollector.collect把结果返回给element
Flink - Asynchronous I/O的更多相关文章
- Flink 原理(六)——异步I/O(asynchronous I/O)
1.前言 本文是基于Flink官网上Asynchronous I/O的介绍结合自己的理解写成的,若有不正确的欢迎大伙留言交流,谢谢! 2.Asynchronous I/O简介 将Flink用于流计 ...
- Flink - RocksDBStateBackend
如果要考虑易用性和效率,使用rocksDB来替代普通内存的kv是有必要的 有了rocksdb,可以range查询,可以支持columnfamily,可以各种压缩 但是rocksdb本身是一个库,是跑在 ...
- Flink - Checkpoint
Flink在流上最大的特点,就是引入全局snapshot, CheckpointCoordinator 做snapshot的核心组件为, CheckpointCoordinator /** * T ...
- Flink - FLIP
https://cwiki.apache.org/confluence/display/FLINK/Flink+Improvement+Proposals FLIP-1 : Fine Grained ...
- Flink Internals
https://cwiki.apache.org/confluence/display/FLINK/Flink+Internals Memory Management (Batch API) In ...
- Flink资料(2)-- 数据流容错机制
数据流容错机制 该文档翻译自Data Streaming Fault Tolerance,文档描述flink在流式数据流图上的容错机制. ------------------------------- ...
- Apache Flink 分布式执行
Flink 的分布式执行过程包含两个重要的角色,master 和 worker,参与 Flink 程序执行的有多个进程,包括 Job Manager,Task Manager 以及 Job Clien ...
- Blink: How Alibaba Uses Apache Flink
This is a guest post from Xiaowei Jiang, Senior Director of Alibaba’s search infrastructure team. Th ...
- 阿里巴巴开源的Asynchronous I/O Design and Implementation
Motivation I/O access, for the most case, is a time-consuming process, making the TPS for single ope ...
随机推荐
- Haproxy全透明代理
1. 系统环境搭建 操作系统Centos7 内核版本3.10 Centos7已自带TPROXY模块,不需要安装TPROXY 2. Haproxy下载,编译,安装,配置 下载地址 http://www. ...
- CentOS5.x、CentOS6.x 使用NFS及mount实现两台服务器间目录共享
一.环境介绍: 服务器:centos 192.168.1.225 客户端:centos 192.168.1.226 二.安装: NFS的安装配置:centos 5 : portmap:实现RPC(协议 ...
- Java Utils工具类大全(转)
源码和jar见:https://github.com/evil0ps/utils #Java Utils --- 封装了一些常用Java操作方法,便于重复开发利用. 另外希望身为Java牛牛的你们一起 ...
- electron安装+运行+打包成桌面应用+打包成安装文件+开机自启动
1.初始化node项目,生成package.json文件 npm init 2.安装electron,并保存为开发依赖项 npm install electron -D 3.根目录下新建index.j ...
- 17中介者模式Mediator
一.什么是中介者模式 Mediator模式也叫中介者模式,是由GoF提出的23种 软件设计模式的一种.Mediator模式是行为模式之一, 在Mediator模式中,类之间的交互行为被统一放在 Med ...
- 网络编程 -- RPC实现原理 -- Netty -- 迭代版本V4 -- 粘包拆包
网络编程 -- RPC实现原理 -- 目录 啦啦啦 V2——Netty -- new LengthFieldPrepender(2) : 设置数据包 2 字节的特征码 new LengthFieldB ...
- Spring 整合 Junit4 进行单元测试
1. pom.xml 引入JAR依赖: <dependency> <groupId>junit</groupId> <artifactId>junit& ...
- WPF自定义路由事件(一)
首先自定义事件支持事件路由,需要使用 RegisterRoutedEvent 方法注册 RoutedEvent C#语法 public static RoutedEvent RegisterRoute ...
- lua_tinker源码笔记1
本篇仅简单介绍使用lua_tinker让lua调用C++函数的过程, C++调用lua函数可以参见博客Lua脚本和C++交互(一). 未完待续. (一) lua调用C++全局函数 这里以lua_tin ...
- PhoneGap 数据库操作
1,openDatabase phonegap官方文档中已经很清楚的标明,如果使用一个数据库首先要用window对象进行创建: var dbShell = window.openDatabase(na ...