luogu3338 [ZJOI2014]力
我发现我的构造方法好像不太一样而且比较显然?……先读入 \(q\) 数组(下表从零开始)。
记 \(i < j\) 时,\(a_{i-j}=-1/i^2\);\(i > j\) 时,\(a_{i-j}=1/i^2\);\(i = j\) 时,\(a_{i-j}=0\)。
答案 \(E_i=\sum_{j=0}^{n-1}a_{i-j}q_j\),可以用 FFT 优化,于是就做完了……吗?
发现 \(a\) 的下标可能会为负,那我们就整体平移一下,使得 \(E_i=\sum_{j=0}^{n-1}a_{i-j+n-1}q_j\),那么答案就是 \(E\) 数组的 \(0+n-1 \ldots n-1+n-1\) 项了。(原先是 \(0 \ldots n-1\) 项)
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int n, lim=1, limcnt, rev[524305];
double q[100005];
const double PI=acos(-1.0);
struct Complex{
double x, y;
Complex(double u=0.0, double v=0.0){
x = u; y = v;
}
Complex operator+(const Complex &u)const{
return Complex(x+u.x, y+u.y);
}
Complex operator-(const Complex &u)const{
return Complex(x-u.x, y-u.y);
}
Complex operator*(const Complex &u)const{
return Complex(x*u.x-y*u.y, x*u.y+y*u.x);
}
}a[524305], b[524305];
void fft(Complex a[], int opt){
for(int i=0; i<lim; i++)
if(i<rev[i])
swap(a[i], a[rev[i]]);
for(int i=2; i<=lim; i<<=1){
int tmp=i>>1;
Complex wn=Complex(cos(2*PI/i), opt*sin(2*PI/i));
for(int j=0; j<lim; j+=i){
Complex w=Complex(1.0, 0.0);
for(int k=0; k<tmp; k++){
Complex tmp1=a[j+k], tmp2=w*a[j+k+tmp];
a[j+k] = tmp1 + tmp2;
a[j+k+tmp] = tmp1 - tmp2;
w = w * wn;
}
}
}
if(opt==-1)
for(int i=0; i<lim; i++)
a[i].x /= lim;
}
int main(){
cin>>n;
for(int i=0; i<n; i++)
scanf("%lf", &b[i].x);
for(int i=-n+1; i<=n-1; i++){
if(i<0)
a[i+n-1].x = -1.0 / i / i;
else if(i==0)
a[i+n-1].x = 0;
else
a[i+n-1].x = 1.0 / i / i;
}
while(lim<=3*(n-1)) lim <<= 1, limcnt++;
for(int i=0; i<lim; i++)
rev[i] = (rev[i>>1]>>1) | ((i&1)<<(limcnt-1));
fft(a, 1);
fft(b, 1);
for(int i=0; i<lim; i++)
a[i] = a[i] * b[i];
fft(a, -1);
for(int i=0; i<n; i++)
printf("%.12f\n", a[i+n-1].x);
return 0;
}
luogu3338 [ZJOI2014]力的更多相关文章
- [ZJOI3527][Zjoi2014]力
[ZJOI3527][Zjoi2014]力 试题描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi.试求Ei. 输入 包含一个整数n,接下来n行每行输入一个数,第i行表示qi. 输出 有n ...
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- 【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)
3527: [Zjoi2014]力 Time Limit: 30 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 2003 Solved: 11 ...
- [洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...
- 笔记-[ZJOI2014]力
[ZJOI2014]力 \[\begin{split} E_j=&\sum_{i=1}^{j-1}\frac{q_i}{(i-j)^2}-\sum_{i=j+1}^{n}\frac{q_i}{ ...
- 【Bzoj3527】【Luogu3338】[Zjoi2014]力(FFT)
题面 Bzoj Luogu 题解 先来颓柿子 $$ F_i=\sum_{j<i}\frac{q_iq_j}{(i-j)^2}-\sum_{j>i}\frac{q_iq_j}{(i-j)^2 ...
随机推荐
- redis---安全设置
redis的安全性是通过设置口令来实现的. 首先打开redis的配置文件,我的是在/etc/redis/redis.conf,个人的路径可能会有不同,可以自行查找. 打开redis.conf文件以后, ...
- Android Broadcast Receive
Broadcast Receive 广播接收(Broadcast Receive)为android的四大组件之一.主要用于监听广播消息,并做出响应.与应用程序中监听事件相比而言,该监听事件为全局监听. ...
- arcgis api for js 地图查询
arcgis api for js入门开发系列四地图查询(含源代码) 上一篇实现了demo的地图工具栏,本篇新增地图查询功能,包括属性查询和空间查询两大块,截图如下: 属性查询效果图: 空间查询效 ...
- shell脚本调试技巧
shell脚本调试之工具——bashdb http://www.cnblogs.com/itcomputer/p/5011845.html
- LeetCode Sort List 链表排序(规定 O(nlogn) )
Status: AcceptedRuntime: 66 ms 题意:根据给出的单链表,用O(nlogn)的时间复杂度来排序.由时间复杂度想到快排.归并这两种排序.本次用的是归并排序.递归将链表的规模不 ...
- AngularJs学习笔记-组件间通讯
组件间通讯 (1)输入属性@Input Tips:子组件属性的改变不会影响到父组件 如下,子组件中stockCode属性发生变化不会引起父组件stock属性的变化 (2)输入属性@Output 子组件 ...
- LuceneTest
/** * Created by mhm on 2019/6/24. */@RunWith(SpringJUnit4ClassRunner.class)public class LuceneTest ...
- Activiti学习记录(五)
1.排他网关 说明: 1) 一个排他网关对应一个以上的顺序流 2) 由排他网关流出的顺序流都有个conditionExpression元素,在内部维护返回boolean类型的决策结果. 3) 决策网关 ...
- 操作表单 -------JavaScrip
本文摘要:http://www.liaoxuefeng.com/ HTML表单的输入控件主要有以下几种: 文本框,对应的<input type="text">,用于输入 ...
- C#的接口基础教程之六 接口转换
C#中不仅支持.Net 平台,而且支持COM平台.为了支持 COM和.Net,C# 包含一种称为属性的独特语言特性.一个属性实际上就是一个 C# 类,它通过修饰源代码来提供元信息.属性使 C# 能够支 ...