Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].

The largest rectangle is shown in the shaded area, which has area = 10 unit.

For example,

Given height = [2,1,5,6,2,3],

return 10.

思路:此题还是有一些难度的,刚開始想的双指针。前后扫描,可是每次求最小的高度的时候都须要遍历一次,效率上不是非常高。为o(n2)。

代码例如以下:

public class Solution {
public int largestRectangleArea(int[] height) { int max = 0;//最大值
int i = 0;//左指针
int j = height.length - 1;//右指针
boolean isMinChange = true; //双指针扫描
while(i <= j){
int minHeight = Integer.MAX_VALUE;//范围内最小值
if(isMinChange){//最小值是否改变
isMinChange = false;
//又一次得到最小值
for(int k = i ; k <= j;k++){
if(height[k] < minHeight){
minHeight = height[k];
}
}
}
//面积
int area = (j - i + 1)*minHeight;
if(max < area){
max = area;
}
if(i == j){//假设相等,则结束
break;
}
if(height[i] < height[j]){//左指针添加,直到比当前大
int k = i;
while(k <= j && height[k] <= height[i]){
if(height[k] == minHeight){//推断最小值是否改变
isMinChange = true;
}
k++;
}
i = k;
}else{//右指针减小,直到比当前大
int k = j;
while( k >= i && height[k] <= height[j]){
if(height[k] == minHeight){//推断最小值是否改变
isMinChange = true;
}
k--;
}
j = k;
}
}
return max;
}
}

解法上过不了OJ,所以仅仅能在网上參看资料。最后找到资料例如以下。是用栈解决的。

public class Solution {
public int largestRectangleArea(int[] height) {
if (height == null || height.length == 0) return 0; Stack<Integer> stHeight = new Stack<Integer>();
Stack<Integer> stIndex = new Stack<Integer>();
int max = 0; for(int i = 0; i < height.length; i++){
if(stHeight.isEmpty() || height[i] > stHeight.peek()){
stHeight.push(height[i]);
stIndex.push(i);
}else if(height[i] < stHeight.peek()){
int lastIndex = 0;
while(!stHeight.isEmpty() && height[i] < stHeight.peek()){
lastIndex = stIndex.pop();
int area = stHeight.pop()*(i - lastIndex);
if(max < area){
max = area;
}
}
stHeight.push(height[i]);
stIndex.push(lastIndex);
}
}
while(!stHeight.isEmpty()){
int area = stHeight.pop()*(height.length - stIndex.pop());
max = max < area ? area:max;
} return max;
}
}

leetCode 84.Largest Rectangle in Histogram (最大矩形直方图) 解题思路和方法的更多相关文章

  1. LeetCode 84. Largest Rectangle in Histogram 单调栈应用

    LeetCode 84. Largest Rectangle in Histogram 单调栈应用 leetcode+ 循环数组,求右边第一个大的数字 求一个数组中右边第一个比他大的数(单调栈 Lee ...

  2. [LeetCode] 84. Largest Rectangle in Histogram 直方图中最大的矩形

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  3. [leetcode]84. Largest Rectangle in Histogram直方图中的最大矩形

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  4. [leetcode]84.Largest Rectangle in Histogram ,O(n)解法剖析

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  5. [LeetCode#84]Largest Rectangle in Histogram

    Problem: Given n non-negative integers representing the histogram's bar height where the width of ea ...

  6. LeetCode 84. Largest Rectangle in Histogram 直方图里的最大长方形

    原题 Given n non-negative integers representing the histogram's bar height where the width of each bar ...

  7. 【LeetCode】84. Largest Rectangle in Histogram 柱状图中最大的矩形(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 单调栈 日期 题目地址: https://leetc ...

  8. 84. Largest Rectangle in Histogram

    https://www.cnblogs.com/grandyang/p/4322653.html 1.存储一个单调递增的栈 2.如果你不加一个0进去,[1]这种情况就会输出结果0,而不是1 3.单调递 ...

  9. 刷题84. Largest Rectangle in Histogram

    一.题目说明 题目84. Largest Rectangle in Histogram,给定n个非负整数(每个柱子宽度为1)形成柱状图,求该图的最大面积.题目难度是Hard! 二.我的解答 这是一个 ...

随机推荐

  1. pat 甲级 1053. Path of Equal Weight (30)

    1053. Path of Equal Weight (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...

  2. ToolTip特效 JavaScript 盗取厦门人才网的特效

    原文发布时间为:2009-05-17 -- 来源于本人的百度文章 [由搬家工具导入] 源代码:http://www.xmaspx.com/Services/FileAttachment.ashx?At ...

  3. 用email实现邮件模板

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. js常用方法 备用

    /* function obj$(id)                      根据id得到对象 function val$(id)                      根据id得到对象的值 ...

  5. DOS头结构

    DOS头结构typedef struct _IMAGE_DOS_HEADER {                 // DOS .EXE header   +0h WORD   e_magic;    ...

  6. 【Linux】自主实现my_sleep【转】

    转自:http://blog.csdn.net/scenlyf/article/details/52068522 版权声明:本文为博主原创文章,未经博主允许不得转载. 首先说一下信号相关的内容. ** ...

  7. synchronous interrupt and asynchronous interrupt

    Asynchronous interrupt 中斷请求信号来自CM3内核的外面,来自各种片上外设和外扩的外设,对CM3来说是"异步"的: e.g. usb otg device S ...

  8. pip 安装时报错Double requirement given: numpy==1.12.1....

    使用pip install -r requirements.txt 命令批量安装模块时,报错: Double requirement given: numpy==1.12.1 from https:/ ...

  9. Codeforces Gym100735 G.LCS Revised (KTU Programming Camp (Day 1) Lithuania, Birˇstonas, August 19, 2015)

    G.LCS Revised   The longest common subsequence is a well known DP problem: given two strings A and B ...

  10. JMeter常见四种变量简介

    在JMeter自动化测试脚本编写过程中,经常需要对测试脚本进行一些参数设置.例如,设置测试计划的全局变量(方便切换不同的测试环境).样本线程(HTTP请求等)的参数传递等. 通常,JMeter中常用的 ...