【bzoj1925】[Sdoi2010]地精部落 组合数学+dp
题目描述
传说很久以前,大地上居住着一种神秘的生物:地精。 地精喜欢住在连绵不绝的山脉中。具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正 整数。 如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰。位于边 缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边)。 类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷。 地精们有一个共同的爱好——饮酒,酒馆可以设立在山谷之中。地精的酒馆 不论白天黑夜总是人声鼎沸,地精美酒的香味可以飘到方圆数里的地方。 地精还是一种非常警觉的生物,他们在每座山峰上都可以设立瞭望台,并轮 流担当瞭望工作,以确保在第一时间得知外敌的入侵。 地精们希望这N 段山脉每段都可以修建瞭望台或酒馆的其中之一,只有满足 这个条件的整座山脉才可能有地精居住。 现在你希望知道,长度为N 的可能有地精居住的山脉有多少种。两座山脉A 和B不同当且仅当存在一个 i,使得 Ai≠Bi。由于这个数目可能很大,你只对它 除以P的余数感兴趣。
输入
仅含一行,两个正整数 N, P。
输出
仅含一行,一个非负整数,表示你所求的答案对P取余 之后的结果。
样例输入
4 7
样例输出
3
题解
自己yy的组合数学+dp
首先我们可以思考,一个序列中,“1”所在的位置一定是山谷。那么“1”左侧一定是右面为山峰,“1”右侧一定是左面为山峰。
然后我们可以发现左右是山峰的情况是对称的,所以相当于一边为山峰的情况。
而且左右互不影响,是相同的子问题。
所以对答案的贡献为“1”左边一边为山峰的方案数*“1”右边一边为山峰的方案数*从n-1个中选出“1”左边个数的数的方案数(组合数)。
同理可以更新出一边为山峰的方案数、两边为山峰的方案数。
状态转移方程(a[i]表示i个数的方案数,b[i]表示i个数中一边(不严格)为山峰的方案数,c[i]表示i个数中两边为山峰的方案数):
$a[i]=\sum\limits_{j=1}^ib[j-1]·b[i-j]·C_{i-1}^{j-1}\\b[i]=\sum\limits_{j=1}^ib[j-1]·c[i-j]·C_{i-1}^{j-1}\\c[i]=\sum\limits_{j=1}^ic[j-1]·c[i-j]·C_{i-1}^{j-1}$
dp初值什么的看着办就好了。
然后就可以O(n^2)求出答案啦。
常数巨大。。。网上很多题解是分奇偶性讨论的,常数可能会小一些。
注:题目不保证p是质数,所以需要递推组合数,这会导致MLE,需要使用滚动数组。
#include <cstdio>
#define N 4210
typedef long long ll;
ll a[N] , b[N] , c[N];
int k[2][N];
int main()
{
int n , p , i , j;
scanf("%d%d" , &n , &p);
a[0] = b[0] = a[1] = b[1] = c[1] = k[1][0] = 1;
for(i = 2 ; i <= n ; i ++ )
{
k[i & 1][0] = 1;
for(j = 1 ; j <= i ; j ++ ) k[i & 1][j] = (k[(i & 1) ^ 1][j - 1] + k[(i & 1) ^ 1][j]) % p;
for(j = 1 ; j <= i ; j ++ )
{
a[i] = (a[i] + k[i & 1][j - 1] * b[j - 1] % p * b[i - j] % p) % p;
b[i] = (b[i] + k[i & 1][j - 1] * c[j - 1] % p * b[i - j] % p) % p;
c[i] = (c[i] + k[i & 1][j - 1] * c[j - 1] % p * c[i - j] % p) % p;
}
}
printf("%lld\n" , a[n]);
return 0;
}
【bzoj1925】[Sdoi2010]地精部落 组合数学+dp的更多相关文章
- bzoj1925 [Sdoi2010] 地精部落【DP】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1925 一个多月前“过”了这道题,还自欺欺人地认为懂了这道题,这直接导致了昨晚多校联测2的T3 ...
- BZOJ1925 [Sdoi2010]地精部落 【dp】
题目 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N ...
- 2018.10.20 bzoj1925: [Sdoi2010]地精部落(dp)
传送门 dp好题. 设f[i][j]f[i][j]f[i][j]表示iii个数结尾是jjj且结尾两个数递增的方案数. 那么显然可以对称的定义出g[i][j]g[i][j]g[i][j]表示iii个数结 ...
- 【BZOJ1925】[Sdoi2010]地精部落 组合数+DP
[BZOJ1925][Sdoi2010]地精部落 Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从 ...
- [bzoj1925][Sdoi2010]地精部落_递推_动态规划
地精部落 bzoj-1925 Sdoi-2010 题目大意:给你一个数n和模数p,求1~n的排列中满足每一个数的旁边两个数,要么一个是边界,要么都比它大,要么都比它小(波浪排列个数) 注释:$1\le ...
- [BZOJ1925][SDOI2010]地精部落(DP)
题意 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N ...
- bzoj 1925 [Sdoi2010]地精部落(DP)
Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi, ...
- BZOJ1925 [Sdoi2010]地精部落 动态规划
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1925 题意概括 给出n,n<=4200,问1~n这些数的排列中,有多少满足一下性质: 性质: ...
- P2467 [SDOI2010]地精部落 (dp+组合数)【扩展Lucas好难不会】
题目链接:传送门 题目: 题目描述 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为N的山脉H可分为从左到右的N段,每段有一个独一无二的高度Hi,其 ...
随机推荐
- COGS 13. 运输问题4
★★☆ 输入文件:maxflowd.in 输出文件:maxflowd.out 简单对比时间限制:1 s 内存限制:128 MB [问题描述] 一个工厂每天生产若干商品,需运输到 ...
- 无法启动 Diagnostic Policy Service(服务错误 1079)的解决方案
问题 在services.msc中手动启动 Diagnostic Policy Service 时,弹出以下提示: ---------------------------服务------------- ...
- UVA11019 Matrix Matcher (AC自动机)
二维的矩阵匹配,把模式矩阵按列拆开构造AC自动机,记录行号(为了缩点判断). 把T矩阵按行匹配,一旦匹配成功,在假想的子矩阵左上角位置加一.最后统计总数. 因为所有模式串长度一样,不用维护last数组 ...
- Python-OpenCV——Image inverting
通常我们将读入的彩色图转化成灰度图,需要将灰度图反转得到掩码,如何正确快速的得到某个图像的反转图呢? 首先看一种看似很正确的写法,对其中每个像素进行如下处理: img[x,y] = abs(img[x ...
- Sequence II
6990: Sequence II 时间限制: 3 Sec 内存限制: 128 MB提交: 206 解决: 23[提交][状态][讨论版][命题人:admin] 题目描述 We define an ...
- SC || Chapter6 复习向 面向可维护性 我哭了
高内聚低耦合 高内聚:一个模块内部各个元素彼此结合的紧密程度,一个软件模块是由相关性很强的代码组成,只负责一项任务,也就是常说的单一责任原则 低耦合:各模块间相互联系紧密程度,模块间接口的复杂性.调用 ...
- vue入坑教程(二)在vue项目中如何导入element以及sass
在项目中导入element以及sass.stylus等方便开发的工具以及UI框架 (1)如何在vue项目中导入elementUI框架 elementUI是饿了么团队开发出来基于vue的前端UI框架,其 ...
- IDEA 官方背景与修改jsp模板以及字体大小
一.官方背景切换 方法一:先打开file找到Settings 如图: 也可以用快捷方式打开:Ctrl+alt+s 打开 找到Editor点击进入 ,再然后找Color Scheme 可以看到如下图 ...
- attachEvent和addEventListener 的使用方法和区别
attachEvent方法,为某一事件附加其它的处理事件.(不支持Mozilla系列)addEventListener方法 用于 Mozilla系列document.getElementById(&q ...
- 扫雷游戏 NOIP(入门)
题目描述: 扫雷游戏是一款十分经典的单机小游戏.它的精髓在于,通过已翻开格子所提示的周围格地雷数,来判断未翻开格子里是否是地雷. 现在给出n行m列的雷区中的地雷分布,要求计算出每个非地雷格的周围格地雷 ...