题目链接

  像题面那样把棋盘染成红黄点。发现骑士迈一步能到达的点的颜色一定是跟他所在的格子的颜色不同的。于是(woc哪来的于是?这个性质有这么明显吗?)从源点向所有红点连边,从所有黄点向汇点连边,红点向从它一步能迈到的黄点连边,然后求出最小割(其实就是最大流啦)用可以站骑士的总点数减去。

  网络流构图好喵啊     一脸懵逼

  

#include<cstdio>
#include<cctype>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<queue>
#define maxn 80000
using namespace std; inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} int n,m;
inline int count(int i){ return i&?i+:i-; }
inline int calc(int x,int y){ return (x-)*n+y; } int u[]={,,,,,-,-,-,-};
int w[]={,-,-,,,,,-,-}; struct Edge{
int next,to,val;
}edge[*maxn];
int head[maxn*],num;
inline void addedge(int from,int to,int val){
edge[++num]=(Edge){head[from],to,val};
head[from]=num;
}
inline void add(int from,int to,int val){
addedge(from,to,val);
addedge(to,from,);
} bool vis[maxn*];
bool ext[][];
int list[maxn*];
int dfn[maxn*];
int Start,End; bool bfs(){
memset(vis,,sizeof(vis));
queue<int> q;
vis[Start]=; dfn[Start]=; q.push(Start);
while(!q.empty()){
int from=q.front();q.pop();
for(int i=head[from];i;i=edge[i].next){
int to=edge[i].to;
if(edge[i].val<=||vis[to]) continue;
vis[to]=;
dfn[to]=dfn[from]+;
q.push(to);
}
}
return vis[End];
} int dfs(int x,int val){
if(val==||x==End) return val;
int flow=; vis[x]=;
for(int &i=list[x];i;i=edge[i].next){
int to=edge[i].to;
if(vis[to]||dfn[to]!=dfn[x]+||edge[i].val==) continue;
int now=dfs(to,min(val,edge[i].val));
val-=now;edge[i].val-=now;edge[count(i)].val+=now;flow+=now;
if(val==) break;
}
if(val!=flow) dfn[x]=-;
return flow;
} int maxflow(){
int ans=;
while(bfs()){
memset(vis,,sizeof(vis));
for(int i=Start;i<=End;++i) list[i]=head[i];
int now=dfs(Start,0x7fffffff);
if(!now) break;
ans+=now;
}
return ans;
} int main(){
n=read(),m=read(); End=n*n+;
for(int i=;i<=m;++i){
int x=read(),y=read();
ext[x][y]=;
}
for(int i=;i<=n;++i)
for(int j=;j<=n;++j){
if(ext[i][j]) continue;
if(!((i+j)&)){
add(Start,calc(i,j),);
for(int k=;k<=;++k){
int x=i+u[k];int y=j+w[k];
if(x<||x>n||y<||y>n) continue;
if(ext[x][y]) continue;
add(calc(i,j),calc(x,y),0x7fffffff);
}
}
else add(calc(i,j),End,);
}
int ans=maxflow();
printf("%d",n*n-m-ans);
}

【Luogu】P3355骑士共存问题(最小割)的更多相关文章

  1. P3355 骑士共存问题 (最小割)

    题意:nxn的棋盘 有m个坏点 求能在棋盘上放多少个马不会互相攻击 题解:这个题仔细想想居然和方格取数是一样的!!! 每个马他能攻击到的地方的坐标 (x+y)奇偶性不一样 于是就黑白染色 s-> ...

  2. 洛谷.3355.骑士共存问题(最小割ISAP)

    题目链接 一个很暴力的想法:每个点拆点,向不能同时存在的连边 但是这样边太多了,而且会有很多重复.我不会说我还写了还没过样例 我们实际就是在做一个最大匹配.考虑原图,同在黄/红格里的骑士是互不攻击的, ...

  3. LUOGU P3355 骑士共存问题(二分图最大独立集)

    传送门 因为骑士只能走"日"字,所以一定是从一个奇点到偶点或偶点到奇点,那么这就是一张二分图,题目要求的其实就是二分图的最大独立集.最大独立集=n-最大匹配. #include&l ...

  4. Luogu P3355 骑士共存问题

    题目链接 \(Click\) \(Here\) 二分图最大独立集.对任意两个可以相互攻击的点,我们可以选其中一个.对于不会互相攻击的,可以全部选中.所以我们只需要求出最大匹配,根据定理,二分图最大独立 ...

  5. P3355 骑士共存问题

    P3355 骑士共存问题 题目描述 在一个 n*n (n <= 200)个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n ...

  6. P3355 骑士共存问题 二分建图 + 当前弧优化dinic

    P3355 骑士共存问题 题意: 也是一个棋盘,规则是“马”不能相互打到. 思路: 奇偶点分开,二分图建图,这道题要注意每个点可以跑八个方向,两边都可以跑,所以边 = 20 * n * n. 然后di ...

  7. 洛谷P3355 骑士共存问题(最小割)

    传送门 de了两个小时的bug愣是没发现错在哪里……没办法只好重打了一遍竟然1A……我有点想从这里跳下去了…… 和方格取数问题差不多,把格子按行数和列数之和的奇偶性分为黑的和白的,可以发现某种颜色一定 ...

  8. 洛谷P3355 骑士共存问题

    题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置 ...

  9. BZOJ 2127 / Luogu P1646 [国家集训队]happiness (最小割)

    题面 BZOJ传送门 Luogu传送门 分析 这道题又出现了二元关系,于是我们只需要解方程确定怎么连边就行了 假设跟SSS分在一块是选文科,跟TTT分在一块是选理科,先加上所有的收益,再来考虑如何让需 ...

随机推荐

  1. Caused by: java.lang.ClassNotFoundException: org.springframework.web.socket.server.standard.ServerEndpointExporter

    Exception in thread "main" java.lang.NoClassDefFoundError: org/springframework/web/socket/ ...

  2. 超全的BAT一线互联网公司内部面试题库

    想进BAT吗?点击上方的蓝色文字关注我们后,马上 告诉你答案!! 欢迎收藏和专注本文,以后我们会陆续的整理和收集其他的公司的面试题,扩大我们的面试库,形成专栏. 这是由乐视网工程师整理的一份一线互联网 ...

  3. SC || Chapter 1

    第一章的重中之重就是这张图吧 (具体参见笔记) ┉┉∞ ∞┉┉┉┉∞ ∞┉┉┉∞ ∞┉┉┉┉∞ ∞┉┉┉┉∞ ∞┉┉┉∞ ∞┉┉┉┉∞ ∞┉┉┉┉∞ ∞┉┉┉∞ ∞┉┉ 区分哪些属性是外部的(面向用户 ...

  4. 面向对象OONo.3单元总结

    一,JML语言 1)JML理论基础:JML是一类语言,用来描述一个方法或一个类的功能.以及这个类在实现这个功能时需要的条件.可能改变的全局变量.以及由于条件问题不能实现功能时这个方法或类的行为,具有明 ...

  5. 01_2_模拟spring装载bean

    01_2_模拟spring装载bean 1. xml配置文件内容 beans.xml <beans> <bean id="u" class="com.w ...

  6. MySQL查询显示连续的结果

    #mysql中 对于查询结果只显示n条连续行的问题# 在领扣上碰到的一个题目:求满足条件的连续3行结果的显示 X city built a new stadium, each day many peo ...

  7. GoF23种设计模式之行为型模式之备忘录模式

    一.概述         在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象的外部保存这个状态.以便以后可以将该对象恢复到原先保存的状态. 二.适用性 1.当需要保存一个对象在某个时刻的状态( ...

  8. Python之路-时间模块

    time模块 import time 时间戳(time.time())--结构化时间(time.localtime)--字符串时间(time.strftime) import time print(t ...

  9. ProC第一弹

    编译pro*c 的makefile例子 原来只需在makefile中追加include $(ORACLE_HOME)/precomp/lib/env_precomp.mk,其他一切按照makefile ...

  10. 命令行执行Qt程序

    原文网址 //helloworld.cpp #include <QApplication> #include <QPushButton> int main(int argc,c ...