Codeforces 1108E2

E2. Array and Segments (Hard version)

Description:

The only difference between easy and hard versions is a number of elements in the array.

You are given an array \(a\) consisting of \(n\) integers. The value of the \(i\)-th element of the array is \(a_i\).

You are also given a set of \(m\) segments. The \(j\)-th segment is \([l_j; r_j]\), where \(1 \le l_j \le r_j \le n\).

You can choose some subset of the given set of segments and decrease values on each of the chosen segments by one (independently). For example, if the initial array \(a = [0, 0, 0, 0, 0]\) and the given segments are \([1; 3]\) and \([2; 4]\) then you can choose both of them and the array will become \(b = [-1, -2, -2, -1, 0]\).

You have to choose some subset of the given segments (each segment can be chosen at most once) in such a way that if you apply this subset of segments to the array \(a\) and obtain the array \(b\) then the value \(\max\limits_{i=1}^{n}b_i - \min\limits_{i=1}^{n}b_i\) will be maximum possible.

Note that you can choose the empty set.

If there are multiple answers, you can print any.

If you are Python programmer, consider using PyPy instead of Python when you submit your code.

Input:

The first line of the input contains two integers \(n\) and \(m\) (\(1 \le n \le 10^5, 0 \le m \le 300\)) — the length of the array \(a\) and the number of segments, respectively.

The second line of the input contains \(n\) integers \(a_1, a_2, \dots, a_n\) (\(-10^6 \le a_i \le 10^6\)), where \(a_i\) is the value of the \(i\)-th element of the array \(a\).

The next \(m\) lines are contain two integers each. The \(j\)-th of them contains two integers \(l_j\) and \(r_j\) (\(1 \le l_j \le r_j \le n\)), where \(l_j\) and \(r_j\) are the ends of the \(j\)-th segment.

Output

In the first line of the output print one integer \(d\) — the maximum possible value \(\max\limits_{i=1}^{n}b_i - \min\limits_{i=1}^{n}b_i\) if \(b\) is the array obtained by applying some subset of the given segments to the array \(a\).

In the second line of the output print one integer \(q\) (\(0 \le q \le m\)) — the number of segments you apply.

In the third line print \(q\) distinct integers \(c_1, c_2, \dots, c_q\) in any order (\(1 \le c_k \le m\)) — indices of segments you apply to the array \(a\) in such a way that the value \(\max\limits_{i=1}^{n}b_i - \min\limits_{i=1}^{n}b_i\) of the obtained array \(b\) is maximum possible.

If there are multiple answers, you can print any.

Sample Input:

5 4

2 -2 3 1 2

1 3

4 5

2 5

1 3

Sample Output:

6

2

4 1

Sample Input:

5 4

2 -2 3 1 4

3 5

3 4

2 4

2 5

Sample Output:

7

2

3 2

Sample Input:

1 0

1000000

Sample Output:

0

0

题目链接

题解:

有一个长为\(n\)的数列,有\(m\)个线段,每个线段将该线段区间的所有数减一,你可以选任意个线段,要求最大化极差并输出一种方案

这种极差的题一个套路是固定最大值求最小值

那么我们可以枚举每一个数作为最大值的方案,对不包含这个数的线段进行操作,然后找最大最小值即可,利用差分的思想单次操作可以\(O(1)\),最后查询极值\(O(n)\),这样我们就找到了一个\(O(n^2)\)的优秀算法,可以通过这题的简单版本

然后我们注意到线段数很少,只有\(300\)个,那么我们可以将原数列分为至多\(600\)段,每一段的数作为最大值时策略是相同的,我们就的到了\(O(n \cdot m +m^2)\)的算法,cf机子上跑得飞快

另外,可以用线段树加速操作得到\(O(mlog(n))\)的做法

甚至可以将\(n\)也变成\(m\),因为我们只关心每一段的极值,可以把原数列切成至多\(600\)段,每一段记录最大最小值即可,复杂度为\(O(m^2)\), 不知道为什么评论指出这个算法的老哥的代码跑的还没我\(O(n \cdot m + m^2)\)快...

AC代码:

#include <bits/stdc++.h>
using namespace std; const int N = 1e5 + 10, M = 310; int n, a[N], b[N], ans, l[M], r[M], m, rec, cnt;
set<int> key; int main() {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
for(int i = 1; i <= m; ++i) {
scanf("%d%d", &l[i], &r[i]);
key.insert(l[i]);
key.insert(r[i] + 1);
}
ans = *max_element(a + 1, a + n + 1) - *min_element(a + 1, a + n + 1);
for(auto it = key.begin(); it != key.end(); ++it) {
int i = *it; ++cnt;
memset(b, 0, sizeof(b));
int mx = -1e9, mn = 1e9, sum = 0;
for(int j = 1; j <= m; ++j) {
if(l[j] <= i && i <= r[j]) continue;
b[l[j]]--, b[r[j] + 1]++;
}
for(int j = 1; j <= n; ++j) {
sum += b[j];
mx = max(mx, a[j] + sum);
mn = min(mn, a[j] + sum);
}
if(mx - mn > ans) {
rec = i;
ans = mx - mn;
}
}
printf("%d\n", ans);
if(rec) {
vector<int> res;
for(int i = 1; i <= m; ++i) {
if(l[i] <= rec && rec <= r[i]) continue;
res.push_back(i);
}
printf("%d\n", (int)res.size());
for(int i = 0; i < res.size(); ++i)
printf("%d%c", res[i], " \n"[i == res.size() - 1]);
}
else
puts("0\n");
return 0;
}

Codeforces 1108E2 Array and Segments (Hard version) 差分, 暴力的更多相关文章

  1. Codeforces 1108E2 Array and Segments (Hard version)(差分+思维)

    题目链接:Array and Segments (Hard version) 题意:给定一个长度为n的序列,m个区间,从m个区间内选择一些区间内的数都减一,使得整个序列的最大值减最小值最大. 题解:利 ...

  2. codeforces#1108E2. Array and Segments (线段树+扫描线)

    题目链接: http://codeforces.com/contest/1108/problem/E2 题意: 给出$n$个数和$m$个操作 每个操作是下标为$l$到$r$的数减一 选出某些操作,使$ ...

  3. E1. Array and Segments (Easy version)(暴力) && E2. Array and Segments (Hard version)(线段树维护)

    题目链接: E1:http://codeforces.com/contest/1108/problem/E1 E2:http://codeforces.com/contest/1108/problem ...

  4. Codeforces Round #535 (Div. 3) E2. Array and Segments (Hard version) 【区间更新 线段树】

    传送门:http://codeforces.com/contest/1108/problem/E2 E2. Array and Segments (Hard version) time limit p ...

  5. CF1108E2 Array and Segments (Hard version)

    线段树 对于$Easy$ $version$可以枚举极大值和极小值的位置,然后判断即可 但对于$Hard$ $version$明显暴力同时枚举极大值和极小值会超时 那么,考虑只枚举极小值 对于数轴上每 ...

  6. Array and Segments (Easy version) CodeForces - 1108E1 (暴力枚举)

    The only difference between easy and hard versions is a number of elements in the array. You are giv ...

  7. 【Codeforces 1108E1】Array and Segments (Easy version)

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 枚举最大值和最小值在什么地方. 显然,只要包含最小值的区间,都让他减少. 因为就算那个区间包含最大值,也无所谓,因为不会让答案变小. 但是那些 ...

  8. CF E2 - Array and Segments (Hard version) (线段树)

    题意给定一个长度为n的序列,和m个区间.对一个区间的操作是:对整个区间的数-1可以选择任意个区间(可以为0个.每个区间最多被选择一次)进行操作后,要求最大化的序列极差(极差即最大值 - 最小值).ea ...

  9. Codeforces 1108E (Array and Segments) 线段树

    题意:给你一个长度为n的序列和m组区间操作,每组区间操作可以把区间[l, r]中的数字都-1,请选择一些操作(可以都不选),使得序列的最大值和最小值的差值尽量的大. 思路:容易发现如果最大值和最小值都 ...

随机推荐

  1. 赵雅智_Swift(3)_swift凝视

    请将你的代码中的非运行文本凝视成提示或者笔记以方便你将来阅读. Swift 的编译器将会在编译代码时自己主动忽略掉凝视部分. 单行凝视 以双正斜杠作(//)为起始标记: // 这是一个凝视 多行凝视 ...

  2. Android gdb so

    gdb debug an android application 1.gdb 要有gdbserver 一般模拟器默认装有gdbserver,如2.3.3的模拟器,看一下有没有: D:\Develope ...

  3. Matlab中图片保存的四种方法

    matlab的绘图和可视化能力是不用多说的,可以说在业内是家喻户晓的.Matlab提供了丰富的绘图函数,比如ez**系类的简易绘图函数,surf.mesh系类的数值绘图函数等几十个.另外其他专业工具箱 ...

  4. tomcat 代码集

    Tomcat类是整个tomcat的起点,负责加载所有的配置信息以及把配置信息解析转换成tomcat组件对象. Context addWebapp(String contextPath, String ...

  5. Core Data 版本号迁移经验总结

    大家在学习和使用Core Data过程中,第一次进行版本号迁移的经历一定是记忆犹新,至少我是这种,XD.弄的不好,就会搞出一些因为迁移过程中数据模型出错导致的Crash.这里总结了一下Core Dat ...

  6. POJ 1952 BUY LOW, BUY LOWER 动态规划题解

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  7. C# 调用类库里的事件

    首先在类库中定义事件: //定义委托 public delegate void DelWeiTuo(string name); //定义事件 public event DelWeiTuo EventW ...

  8. mongodb分页

    1 什么是mongodb的分页 就是一次返回表中的连续若干行. 2 什么是sql分页 同样是返回表中的连续若干行. 3 如何实现sql分页 利用order by xxx limit xxx 4 如何实 ...

  9. Android开发之onMeasure(int widthMeasureSpec, int heightMeasureSpec)方法

    onMeasure()函数由包含这个View的具体的ViewGroup调用,因此值也是由其ViewGroup中传入的.子类View的这两个参数widthMeasureSpec, heightMeasu ...

  10. Python序列——字符串

    字符串 1 string模块预定义字符串 2 普通字符串与Unicode字符串 3 只适用于字符串的操作 4 原始字符串 5 Unicode字符串操作符 内建函数 1 标准类型函数与序列操作函数 2 ...