网络流想必大家都知道,在这不过多赘述。网络流中有一类问题是让你求最大流,关于这个问题,许多计算机学家给出了许多不同的算法,在这里——正如标题所说——我们只介绍其中的一种——\(\tt{Dinic}\)

Dinic是最大流算法中综合性能比较好的一个算法,它的思想继承\(Ford-Fulkerson\)算法,但对FF算法有了很大的一个改进。Dinic通过分层图大大提高了算法效率,减少了许多不必要的搜索。

例题

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
struct zzz{
    int t,len,nex;
}e[100010<<2]; int head[10010],tot=1;
void add(int x,int y,int z){
    e[++tot].t=y;
    e[tot].len=z;
    e[tot].nex=head[x];
    head[x]=tot;
}
int vis[10010],s,t;
//每次搜索前跑一遍分层图
bool bfs(){
    queue <int> q;
    memset(vis,0,sizeof(vis));
    q.push(s); vis[s]=1;
    while(!q.empty()){
        int k=q.front(); q.pop();
        for(int i=head[k];i;i=e[i].nex){
            int to=e[i].t;
            if(!vis[to]&&e[i].len){
                q.push(to);
                vis[to]=vis[k]+1;
                if(to==t) return 1;
            }
        }
    }
    return vis[t];
}
//寻找增广路径
int dfs(int from,int flow){
    if(from==t||!flow) return flow;
    int rest=0,fl;
    for(int i=head[from];i;i=e[i].nex){
        int to=e[i].t;
        if(vis[to]==vis[from]+1&&(fl=dfs(to,min(flow-rest,e[i].len)))){
            e[i].len-=fl;
            e[i^1].len+=fl;
            rest+=fl;
            if(rest==flow) return flow;
        }
    }
    if(rest<flow)
      vis[from]=0;
    return rest;
}
//dinic
int dinic(){
    int ans=0;
    while(bfs())
      ans+=dfs(s,0x7ffffff);
    return ans;
}
inline int read()
{
    int k=0; char c=getchar();
    for(;c<'0'||c>'9';) c=getchar();
    for(;c>='0'&&c<='9';c=getchar())
      k=(k<<3)+(k<<1)+c-48;
    return k;
}
int main(){
    int n=read(),m=read();
    s=read(),t=read();
    for(int i=1;i<=m;i++){
        int x=read(),y=read(),z=read();
        add(x,y,z); add(y,x,0);
    }
    printf("%d",dinic());
    return 0;
}

网络流的$\mathfrak{Dinic}$算法的更多相关文章

  1. 网络流-最大流问题 ISAP 算法解释(转自Renfei Song's Blog)

    网络流-最大流问题 ISAP 算法解释 August 7, 2013 / 编程指南 ISAP 是图论求最大流的算法之一,它很好的平衡了运行时间和程序复杂度之间的关系,因此非常常用. 约定 我们使用邻接 ...

  2. HDU3549 Flow Problem(网络流增广路算法)

    题目链接. 分析: 网络流增广路算法模板题.http://www.cnblogs.com/tanhehe/p/3234248.html AC代码: #include <iostream> ...

  3. POJ 2455 网络流 基础题 二分+网络流 dicnic 以及 sap算法

    Secret Milking Machine Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8189   Accepted: ...

  4. 网络流入门--最大流算法Dicnic 算法

    感谢WHD的大力支持 最早知道网络流的内容便是最大流问题,最大流问题很好理解: 解释一定要通俗! 如右图所示,有一个管道系统,节点{1,2,3,4},有向管道{A,B,C,D,E},即有向图一张.  ...

  5. 网络流之最大流算法(EK算法和Dinc算法)

    最大流 网络流的定义: 在一个网络(有流量)中有两个特殊的点,一个是网络的源点(s),流量只出不进,一个是网络的汇点(t),流量只进不出. 最大流:就是求s-->t的最大流量 假设 u,v 两个 ...

  6. (通俗易懂小白入门)网络流最大流——EK算法

    网络流 网络流是模仿水流解决生活中类似问题的一种方法策略,来看这么一个问题,有一个自来水厂S,它要向目标T提供水量,从S出发有不确定数量和方向的水管,它可能直接到达T或者经过更多的节点的中转,目前确定 ...

  7. 网络流(2)——用Ford-Fullkerson算法寻找最大流

    寻找最大流 在大规模战争中,后勤补给是重中之重,为了尽最大可能满足前线的物资消耗,后勤部队必然要充分利用每条运输网,这正好可以用最大流模型解决.如何寻找一个复杂网络上的最大流呢? 直觉上的方案 一种直 ...

  8. 网络流最大流——dinic算法

    前言 网络流问题是一个很深奥的问题,对应也有许多很优秀的算法.但是本文只会讲述dinic算法 最近写了好多网络流的题目,想想看还是写一篇来总结一下网络流和dinic算法以免以后自己忘了... 网络流问 ...

  9. 初探网络流:dinic/EK算法学习笔记

    前记 这些是初一暑假的事: "都快初二了,连网络流都不会,你好菜啊!!!" from 某机房大佬 to 蒟蒻我. flag:--NOIP后要学网络流 咕咕咕------------ ...

随机推荐

  1. 自定义socket 模拟B/S服务端

    目录 通过什么实现连接? B/S 客户端与服务端交互过程 socket server端 python代码 (静态html反馈) socket server端 python代码 (动态html反馈) 小 ...

  2. MyBatis逆向工程代码的生成以及使用详解(持续更新)

    逆向工程简介什么是逆向工程:        mybatis需要程序员自己编写sql语句,mybatis官方提供逆向工程,可以针对单表自动生成mybatis执行所需要的代码(mapper.java.ma ...

  3. 黑马MySQL数据库学习day01 安装多个版本MySQL mysqld.exe工具

  4. 51 Nod 1640 天气晴朗的魔法( Kruskall )

    #include <bits/stdc++.h> typedef long long LL; using namespace std; ; struct node{ LL u,v,w; n ...

  5. 单线程单元(STA)线程都应使用泵式等待基元

    CLR 无法从 COM 上下文 0x20ad98 转换为 COM 上下文 0x20af08,这种状态已持续 60 秒.拥有目标上下文/单元的线程很有可能执行的是非泵式等待或者在不发送 Windows ...

  6. apache关联php

    LoadModule php5_module "D:/softs/php/php5apache2_2.dll" AddType application/x-httpd-php .p ...

  7. WIN32项目中MFC程序窗口居中

    //class CMainWindow : public CFrameWnd void CMainWindow::OnSize(UINT nType, int cx, int cy){    CFra ...

  8. 利用js日期控件重构WEB功能

    开发需求:网页中的日期部门(注册页面和查询条件)都用js日期控件重写 页面一:更新员工页面 empUpdate.jsp 中增加 onfocus 事件 入职日期:<input id="h ...

  9. PHP识别二维码功能,php-zbarcode 安装

    php-zbarcode是PHP识别二维码的扩展. 下面是安装方法,安装前要先安装ImageMagick.zbar. php-zbarcode 下载地址 安装ImageMagick: yum inst ...

  10. selenium-Python之定位下拉框选择

    1.通过select 进行定位下拉框 下拉框如图所示 通过代码定位 #通过index进行选择Select(driver.find_element_by_id("cardType") ...