1329. Galactic History

比赛的时候看到学弟A了这题然后跟榜做,结果在LCA的道路上一去不复返,这个题是很像LCA求最近公共祖先的,不过三个人都没学过LCA,只能拿着资料看着像然后就打上去,结果debug半天,真是吃鸡,边学边做。

题意:n个点,接下来n行每行每个u,v,表示v是u的父节点。v=-1表示u是祖先节点。然后q次查询,每次一个u,v。如果u是v所在的子树的根,输出1,如果v是u所在的子树的根,输出-2,否则输出0。

思路:我们可以先dfs或bfs将这颗树分层,最朴素的思路肯定是从下层往上层查找,基于这个我们想到了LCA的复杂度,如果一层一层找肯定时TLE,亲测有TLE。但我们就想用二分法确定公共祖先,但模板是两个节点同时往上走到同一节点,这题我们需要判断两个节点是否在同一条链中。比赛时间不多,赛后才知道我们dfs递归的时候可以用时间戳来标记节点,如果两个点在同一条链中其时间戳是否一定的关系的,每个点用两个时间戳表示进和出的时间,这样就很好判断了。

int ru[N],chu[N],dep;
vector<int>g[N];
void init()
{
memset(ru,0,sizeof(ru));
memset(chu,0,sizeof(chu));
for(int i=1;i<N;i++) g[i].clear();
}
void dfs(int v,int u)
{
ru[v]=dep++;
for(int i=0;i<g[v].size();i++)
if(g[v][i]!=u) dfs(g[v][i],v);
chu[v]=dep-1;
}
int main()
{
int n,m;
while(~scanf("%d",&n))
{
int root=0,u,v;
init();
for(int i=1;i<=n;i++)
{
scanf("%d%d",&u,&v);
if(v!=-1) g[v].push_back(u);
if(v==-1) root=u;
}
dep=0;
dfs(root,-1);
scanf("%d",&m);
while(m--)
{
scanf("%d%d",&u,&v);
if(ru[u]<=ru[v]&&chu[u]>=chu[v]) puts("1");
else if(ru[u]>=ru[v]&&chu[u]<=chu[v]) puts("2");
else puts("0");
}
}
return 0;
}

思路二:不甘于昨天那种LCA的写法,今天又重新调出来debug了一下终于还是用LCA过了。

和上述说的差不多,LCA求最近公共祖先,从下层往上走,一直逼近,最后到同一层,这个题还没有LCA这么麻烦,我们只需判断从下层往上走到达同一层是否会重合,是的话说明这两个点在同一条链中。先dfs预处理深度和父节点,然后用倍增优化,p[k][v]表示v点往上走2^k层到达的点,预处理出来我们每次就可以在O(logn)内查找了。

vector<int>g[N];
int n,m,p[20][N],d[N],node[N];
void init1()
{
memset(p,0,sizeof(p));
memset(d,0,sizeof(d));
for(int i=0; i<N; i++) g[i].clear();
}
void dfs(int v,int u,int dep)
{
p[0][v]=u;
d[v]=dep;
int len=g[v].size();
for(int j=0; j<len; j++)
if(g[v][j]!=u)
dfs(g[v][j],v,dep+1);
}
void init()
{
for(int k=0; k<17; k++)
for(int i=1; i<=n; i++)
if(p[k][node[i]]<0) p[k+1][node[i]]=-1;
else p[k+1][node[i]]=p[k][p[k][node[i]]];
}
bool lca(int u,int v)
{
for(int k=0; k<17&&d[u]>d[v]&&u!=-1; k++)//倒着来也行,从17到0
{
if((d[u]-d[v])>>k&1)
u=p[k][u];
// else break;
// printf("%d %d %d\n",k,u,p[k][u]);
}
return u==v;
}
int main()
{
while(~scanf("%d",&n))
{
init1();
int u,v,root=0;
for(int i=1; i<=n; i++)
{
scanf("%d%d",&node[i],&v);
if(v!=-1) g[v].push_back(node[i]);
else root=node[i];
}
dfs(root,-1,0);
init();
scanf("%d",&m);
while(m--)
{
scanf("%d%d",&u,&v);
if(d[v]>d[u])
{
if(lca(v,u)) puts("1");
else puts("0");
}
else if(d[u]>d[v])
{
if(lca(u,v)) puts("2");
else puts("0");
}
else puts("0");
}
}
return 0;
}

Timus 1329. Galactic History。LCA最近公共祖先或dfs递归离线处理!的更多相关文章

  1. lca 最近公共祖先

    http://poj.org/problem?id=1330 #include<cstdio> #include<cstring> #include<algorithm& ...

  2. Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)

    Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...

  3. LCA(最近公共祖先)模板

    Tarjan版本 /* gyt Live up to every day */ #pragma comment(linker,"/STACK:1024000000,1024000000&qu ...

  4. CodeVs.1036 商务旅行 ( LCA 最近公共祖先 )

    CodeVs.1036 商务旅行 ( LCA 最近公共祖先 ) 题意分析 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从 ...

  5. LCA近期公共祖先

    LCA近期公共祖先 该分析转之:http://kmplayer.iteye.com/blog/604518 1,并查集+dfs 对整个树进行深度优先遍历.并在遍历的过程中不断地把一些眼下可能查询到的而 ...

  6. LCA 近期公共祖先 小结

    LCA 近期公共祖先 小结 以poj 1330为例.对LCA的3种经常使用的算法进行介绍,分别为 1. 离线tarjan 2. 基于倍增法的LCA 3. 基于RMQ的LCA 1. 离线tarjan / ...

  7. LCA最近公共祖先 ST+RMQ在线算法

    对于一类题目,是一棵树或者森林,有多次查询,求2点间的距离,可以用LCA来解决.     这一类的问题有2中解决方法.第一种就是tarjan的离线算法,还有一中是基于ST算法的在线算法.复杂度都是O( ...

  8. Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)【转】【修改】

    一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成 ...

  9. (转)Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)

    基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个 ...

随机推荐

  1. Java VS Python 应该先学哪个?

    http://blog.segmentfault.com/hlcfan/1190000000361407 http://www.tuicool.com/articles/fqAzqi Java 和 P ...

  2. 有一个无效 SelectedValue,因为它不在项目列表中

    “Drp_XX”有一个无效 SelectedValue,因为它不在项目列表中 出现以上异常的原因肯定是将DrowDownList控件的SelectedValue属性赋值为一个列表中不存在的值.那么我们 ...

  3. hdu 5093 Battle ships (二分图)

    二分图最大匹配问题 遇到冰山就把行列拆成两个部分.每个部分x也好,y也好只能匹配一次 图画得比较草,将就着看 横着扫一遍,竖着扫一遍,得到编号 一个位置就对应一个(xi,yi)就是X集到Y集的一条边, ...

  4. iOS 微信和支付宝关于回调处理

    在支付这一块,发现讲支付集成的比较多,但是关于支付后回调处理的不多见,(当时因为这个问题懵逼了好久)就自己总结一下, 1.支付宝回调 支付宝的回调想对来说比较简单一些,因为支付宝的回调就在调起支付宝的 ...

  5. Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'fundService': Injection of resource dependencies failed;

    在进行SSM的Controller的编写, 从浏览器访问后端Controller的时候遇到了这个问题. 这个问题的描述: 创建Bean的对象失败 错误代码如下: @Service("fund ...

  6. java基础—GUI编程(一)

    一.AWT介绍

  7. 点击按钮在表格的某一行下,在添加一行(HTML+JS)

    使用js在指定的tr下添加一个新的一行newTr html代码: <table> <tr> <td>用户名:</td> <td><in ...

  8. 删除sqlserver管理器登录信息缓存

    在Windows10下测试有效: C:\Users\<user>\AppData\Roaming\Microsoft\Microsoft SQL Server\100\Tools\Shel ...

  9. 01_2_Servlet简介

    01_2_Servlet简介 1. Servlet简介 Servlet是服务器小应用程序 用来完成B/S架构下,客户端请求的响应处理 平台独立,性能优良,能以线程方式运行 Servlet API为Se ...

  10. [BZOJ] 1127: [POI2008]KUP

    似曾相识的感觉 考虑另一个判断问题,给定一个k,问这个k是否可行 存在矩形和\(sum>2k\),则该矩阵不对判定做出贡献 存在矩形和\(sum\in [k,2k]\),则我们找到了一个解 于是 ...