loj #110. 乘法逆元
#110. 乘法逆元
内存限制:256 MiB时间限制:1000 ms标准输入输出
题目描述
这是一道模板题。
给定正整数 n nn 与 p pp,求 1∼n 1 \sim n1∼n 中的所有数在模 p pp 意义下的乘法逆元。
输入格式
一行两个正整数 n nn 与 p pp
输出格式
n nn 行,第 i ii 行一个正整数,表示 i ii 在模 p pp 意义下的乘法逆元。
样例
样例输入
10 13
样例输出
1
7
9
10
8
11
2
5
3
4
数据范围与提示
1≤n≤3×106,n<p<20000528 1 \leq n \leq 3 \times 10 ^ 6, n < p < 200005281≤n≤3×106,n<p<20000528
p pp 为质数。
#include<cstdio>
#include<iostream>
#define LL long long
const int size = 3e6+;
int n,p,inv[size];
int main() {
scanf("%d%d",&n,&p);
inv[]=inv[]=;
for(int i=;i<=n;++i)
inv[i]=(LL)inv[p%i]*(p-p/i)%p;
for(int i=;i<=n;++i)
printf("%d\n",inv[i]);
return ;
}
loj #110. 乘法逆元的更多相关文章
- LibreOJ #110. 乘法逆元
二次联通门 : LibreOJ #110. 乘法逆元 /* LibreOJ #110. 乘法逆元 求一个数在模意义下的所有逆元 */ #include <cstdio> void read ...
- $O(n+log(mod))$求乘法逆元的方法
题目 LOJ #152. 乘法逆元 2 题解 一个奇技淫巧qwq.可以离线求乘法逆元,效率\(O(n+log(mod))\). 考虑处理出\(s_n\)表示\(\prod_{i=1}^na_i\).以 ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 51nod1256(乘法逆元)
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256 题意:中文题诶~ 思路: M, N 互质, 求满足 K ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- HDU 5651 计算回文串个数问题(有重复的全排列、乘法逆元、费马小定理)
原题: http://acm.hdu.edu.cn/showproblem.php?pid=5651 很容易看出来的是,如果一个字符串中,多于一个字母出现奇数次,则该字符串无法形成回文串,因为不能删减 ...
- Codeforces 543D Road Improvement(树形DP + 乘法逆元)
题目大概说给一棵树,树的边一开始都是损坏的,要修复一些边,修复完后要满足各个点到根的路径上最多只有一条坏的边,现在以各个点为根分别求出修复边的方案数,其结果模1000000007. 不难联想到这题和H ...
- HDU 1452 (约数和+乘法逆元)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个 ...
- HDU 1576 (乘法逆元)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576 题目大意:求(A/B)mod 9973.但是给出的A是mod形式n,n=A%9973. 解题思 ...
随机推荐
- 创建Django项目并将其部署在腾讯云上
这段时间在做scrapy爬虫,对爬出来的数据基于Django做了统计与可视化,本想部署在腾讯云上玩玩,但是因为以前没有经验遇到了一些问题,在这里记录一下: 首先说下Django的创建与配置: 1. 创 ...
- Memcached配置失误引发的Keystone token丢失的问题
故障现象 近期公司的OpenStack上频繁出现虚拟机创建失败的情况,查看日志定位到问题出在neutron-server向keystone认证token失败. 故障原因 Keystone所使用的Mem ...
- HDU 4565 So Easy! 矩阵快速幂
题意: 求\(S_n=\left \lceil (a+\sqrt{b})^n \right \rceil mod \, m\)的值. 分析: 设\((a+\sqrt{b})^n=A_n+B_n \sq ...
- UTV - URL Tag Validation
What`s UTV 1.URL Tag Validation 2.Special format of URL for preventing unauthorized usage and access ...
- 模拟 - BZOJ 1510 [POI2006] Kra-The Disks
BZOJ 1510 [POI2006] Kra-The Disks 描述 Johnny 在生日时收到了一件特殊的礼物,这件礼物由一个奇形怪状的管子和一些盘子组成. 这个管子是由许多不同直径的圆筒(直径 ...
- LPSTR LPCSTR LPWSTR LPCWSTR区别
LPSTR 一个32位的指向字符串的指针 LPCSTR 一个32位的指向字符串常量的指针 LPWSTR 一个32位的指向unicode字符串的指针 LPCWSTR 个 ...
- Leetcode 467.环绕字符串中的唯一子字符串
环绕字符串中的唯一子字符串 把字符串 s 看作是"abcdefghijklmnopqrstuvwxyz"的无限环绕字符串,所以 s 看起来是这样的:"...zabcdef ...
- Django创建并连接数据库(实现增删改查)--ORM框架雏形
第一步:要先创建数据库(orm是不能创建数据库的) 第二步:settings里面指定连接到哪个数据库 DATABASES = { #默认使用的是sqlite3数据库 'default': { 'ENG ...
- [adb 学习篇] adb pull
adb pull E:\uitest\testcase\CaseDemo\testcase\3dmark\3DMarkAndroid /sdcard/3DMarkAndroid 假设: E: ...
- Codeforces Round #410 (Div. 2) A. Mike and palindrome
A. Mike and palindrome time limit per test 2 seconds memory limit per test 256 megabytes input stand ...