Presto查询引擎简单分析
Hive查询流程分析
各个组件的作用
UI(user interface)(用户接口):提交数据操作的窗口
Driver(引擎):负责接收数据操作,实现了会话句柄,并提供基于JDBC / ODBC的execute和fetch API
Metastore(元数据):Hive元数据,存储所有表信息以及相关的HDFS文件存储目录,一般采用MySQL或者derby存储
Compiler(编译器):解析查询的SQL,生成阶段性的执行计划(包含MapReduce、元数据操作)
Execution Engine(执行引擎):执行compiler生成的执行计划。该执行计划是一个阶段的DAG
查询流程
Step 1:UI调用的Driver的execute接口
Step 2:Driver为查询创建会话句柄,并将查询发送给compiler以生成执行计划,
Step 3,4:compiler从metastore获取相关的元数据
Step 5:检查元数据,基于查询谓词调整分区,解析SQL,生成执行计划
Step 6,6.1,6.2,6.3:由compiler生成的执行计划是阶段的DAG,每个阶段都会涉及到Map/Reduce job,元数据的操作或者HDFS文件的操作。
在Map/Reduce阶段,执行计划包含Map操作树(操作树在Mappers上执行)和reduce操作树(Reduce 操作树在 Reducers上执行),
Execution Engine 将各个阶段提交个适当的组件执行。
Step 7, 8 and 9:在每个任务(mapper / reducer)中,表或者中间输出相关的反序列化器从HDFS读取行,并通过相关的操作树进行传递。
一旦这些输出产生,将通过序列化器生成零时的的HDFS文件(这个只发生在只有Map没有reduce的情况),生成的HDFS零时文件用于执行计划后续的Map/Reduce阶段。
对于DML操作,临时文件最终移动到表的位置。该方案确保不出现脏数据读取(文件重命名是HDFS中的原子操作),
对于查询,临时文件的内容由Execution Engine直接从HDFS读取,作为从Driver Fetch API的一部分
Presto查询流程分析
在Map/Reduce阶段 执⾏计划包含Map操作树 操作树在Mappers上执⾏ 和reduce
各个组件的作用
Client(客户端):提交数据操作的窗口
Discovery Server(服务发现者):存储可用的Server列表
Coordinator(协调者): 接收数据操作,解析SQL语句,生成查询计划,分发任务至Worker机
Connector Plugin(连接插件):连接Storagr,提供元数据,支持Hive、Kafka、MySQL、MonogoDB、Redis、JMX等数据源,可自定义
Worker(执行者):执行查询计划
查询流程
1、Client使用HTTP协议发送一个query请求
2、通过Discovery Server发现可用的Server
3、Coordinator构建查询计划(通过Anltr3解析为AST(抽象语法树),然后通过Connector获取原始数据的Metadata信息,生成分发计划和执行计划)
4、Coordinator向workers发送任务
5、Worker通过Connector插件读取数据
6、Worker在内存里执行任务(Worker是纯内存型计算引擎)
7、Worker将数据返回给Coordinator,汇总之后再响应客户端
Presto与Hive对比
区别:
MapReduce每个操作都需要写磁盘,每个stage需要等待前一个stage全部完成才开始执行,
而Presto将SQL转换为stage,每个stage又由多个tasks执行,每个tasks又将分为多个split。
所有的task是并行的方式执行,stage之间数据是以pipeline形式流式的执行,
数据之间的传输也是通过网络以Memory-to-Memory的形式进行,没有磁盘io操作。
这也是Presto性能比Hive快5-10倍的决定性原因
Presto缺点
1、没有容错能力,当一个query分发到多个Worker去执行时,当有一个Worker因为各种原因查询失败,Master感知到之后,整个query也会失败
2、内存限制,由于Presto是纯内存计算,所以当内存不够时,Presto并不会将结果dump到磁盘上,所以查询也就失败了(据说最新版本的Presto已经支持写盘操作)
3、并行查询,因为所有的task都是并行执行,如果其中一台Worker因为各种原因查询很慢,那么整个query就会变得很慢
4、并发限制,因为全内存操作+内存限制,能同时处理的数据量有限,因而导致并发能力不足
Mob项目的应用
http://gitlab.code.mob.com/mobdata-plat/dbcloud-api
作者:MobService
链接:https://juejin.im/post/5d103fb76fb9a07eb15d6145
来源:掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
Presto查询引擎简单分析的更多相关文章
- Presto 来自Facebook的开源分布式查询引擎
Presto是一个分布式SQL查询引擎, 它被设计为用来专门进行高速.实时的数据分析.它支持标准的ANSI SQL,包括复杂查询.聚合(aggregation).连接(join)和窗口函数(windo ...
- 探究Presto SQL引擎(3)-代码生成
vivo 互联网服务器团队- Shuai Guangying 探究Presto SQL引擎 系列:第1篇<探究Presto SQL引擎(1)-巧用Antlr>介绍了Antlr的基本用法 ...
- 大数据系列之分布式大数据查询引擎Presto
关于presto部署及详细介绍请参考官方链接 http://prestodb-china.com PRESTO是什么? Presto是一个开源的分布式SQL查询引擎,适用于交互式分析查询,数据量支持G ...
- 实时查询引擎 - Facebook Presto 介绍与应用
1. Presto 是什么 Facebook presto是什么,继Facebook创建了HIVE神器后的又一以SQL语言作为接口的分布式实时查询引擎,可以对PB级的数据进行快速的交互式查询.它支 ...
- Presto: 可以处理PB级别数据的分布式SQL查询引擎
2012年秋季Facebook启动了Presto,Presto的目的是在几百PB级别数据量上面进行准实时分析.在摒弃了一些外部项目以后,Facebook准备开发他们自己的分布式查询引擎.Presto的 ...
- Facebook 正式开源其大数据查询引擎 Presto
Facebook 正式宣布开源 Presto —— 数据查询引擎,可对250PB以上的数据进行快速地交互式分析.该项目始于 2012 年秋季开始开发,目前该项目已经在超过 1000 名 Faceboo ...
- 探究Presto SQL引擎(1)-巧用Antlr
一.背景 自2014年大数据首次写入政府工作报告,大数据已经发展7年.大数据的类型也从交易数据延伸到交互数据与传感数据.数据规模也到达了PB级别. 大数据的规模大到对数据的获取.存储.管理.分析超出了 ...
- 探究Presto SQL引擎(4)-统计计数
作者:vivo互联网用户运营开发团队 - Shuai Guangying 本篇文章介绍了统计计数的基本原理以及Presto的实现思路,精确统计和近似统计的细节及各种优缺点,并给出了统计计数在具体业务 ...
- HBase高性能复杂条件查询引擎
转自:http://blog.csdn.net/bluishglc/article/details/31799255 mark 写在前面 本文2014年7月份发表于InfoQ,HBase的PMC成员T ...
随机推荐
- 在WIN2008R2的IIS7环境下安装PHP5.6.15
1.下载PHP5.6.15 在http://windows.php.net/download页面中找到VC11 x64 Non Thread Safe下载ZIP版. 2.将下载的压缩包解压到D盘PHP ...
- manjaro linux没有ll等命令的解决办法
编辑~/.bashrc, 添加alias 如下 vim ~/.bashrc设置别名. 添加如下行 alias ll='ls -alF' alias la='ls -A' alias vi='vim' ...
- python的标准模块
本文用于记录python中的标准模块,随时更新. decimal模块(解决小数循环问题): >>> import decimal >>> a = decimal.D ...
- 并查集:CDOJ1593-老司机破阵 (假的并查集拆除)
老司机破阵 Time Limit: 4500/1500MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Problem Descri ...
- SQL_4_函数
在SQL的函数中可以执行一些诸如对某一些进行汇总或将一个字符串中的字符转换为大写的操作等: 函数有:汇总函数.日期与时间函数.数学函数.字符函数.转换函数与其他函数. 汇总函数 这是一组函数,它们返回 ...
- 光学字符识别OCR-5 文本切割
经过前面文字定位得到单行的文本区域之后,我们就可以想办法将单行的文本切割为单个的字符了.因为第三步的模型是针对单个的字符建立的,因此这一步也是必须的. 均匀切割 基于方块汉字的假设,事实上最简单的切割 ...
- js各种继承方式和优缺点的介绍
js各种继承方式和优缺点的介绍 作者: default 参考网址2 写在前面 本文讲解JavaScript各种继承方式和优缺点. 注意: 跟<JavaScript深入之创建对象>一样,更像 ...
- loj2028 「SHOI2016」随机序列
定义区间是内部只含有乘号的区间. 对于区间左端点是 \(l \geq 2\) 的情况,左端点前头是加号的情况和前头是减号的情况的个数是相同的.因此这些区间不对答案产生贡献. 所以区间左端点必定是 \( ...
- poj2449 Remmarguts' Date K短路 A*
K短路裸题. #include <algorithm> #include <iostream> #include <cstring> #include <cs ...
- 安装python包
开始--cmd pip install pymongo 直到最后给出提示successfull install pymongo-**(版本号,最新的)