Getting Started with OpenMP
Abstract
As you probably know by now, to get the maximum performance benefit from a processor with Hyper-Threading Technology, an application needs to be executed in parallel. Parallel execution requires threads, and threading an application is not trivial. What you may not know is that tools like OpenMP* can make the process a lot easier.
This is the first in a series of three white-papers that teach you, an experienced C/C++ programmer, how to use OpenMP to get the most out of Hyper-Threading Technology. This first paper shows you how to parallelize loops, called work sharing. The second paper teaches you how to exploit non-loop parallelism and some additional OpenMP features. The final paper discusses the OpenMP runtime library functions, the Intel® C++ Compiler, and how to debug your application if things go wrong.
A Quick Introduction to OpenMP
The designers of OpenMP wanted to provide an easy method to thread applications without requiring that the programmer know how to create, synchronize, and destroy threads or even requiring him or her to determine how many threads to create. To achieve these ends, the OpenMP designers developed a platform-independent set of compiler pragmas, directives, function calls, and environment variables that explicitly instruct the compiler how and where to insert threads into the application. Most loops can be threaded by inserting only one pragma right before the loop. Further, by leaving the nitty-gritty details to the compiler and OpenMP, you can spend more time determining which loops should be threaded and how to best restructure the algorithms for maximum performance. The maximum performance of OpenMP is realized when it is used to thread "hotspots," the most time-consuming loops in your application.
The power and simplicity of OpenMP is best demonstrated by looking at an example. The following loop converts a 32-bit RGB (red, green, blue) pixel to an 8-bit gray-scale pixel. The one pragma, which has been inserted immediately before the loop, is all that is needed for parallel execution.
#pragma omp parallel for
for (i=0; i < numPixels; i++)
{
pGrayScaleBitmap[i] = (unsigned BYTE)
(pRGBBitmap[i].red * 0.299 +
pRGBBitmap[i].green * 0.587 +
pRGBBitmap[i].blue * 0.114);
}
Let's take a closer look at the loop. First, the example uses 'work-sha ring,' the general term used in OpenMP to describe distribution of work across threads. When work-sharing is used with the for construct, as shown in the example, the iterations of the loop are distributed among multiple threads so that each loop iteration is executed exactly once and in parallel by one or more threads. OpenMP determines how many threads to create and how to best create, synchronize, and destroy them. All the programmer needs to do is to tell OpenMP which loop should be threaded.
OpenMP places the following five restrictions on which loops can be threaded:
The loop variable must be of type signed integer. Unsigned integers, such as DWORD's, will not work.
The comparison operation must be in the form loop_variable <, <=, >, or >= loop_invariant_integer
The third expression or increment portion of the for loop must be either integer addition or integer subtraction and by a loop invariant value.
If the comparison operation is < or <=, the loop variable must increment on every iteration, and conversely, if the comparison operation is > or >=, the loop variable must decrement on every iteration.
The loop must be a basic block, meaning no jumps from the inside of the loop to the outside are permitted with the exception of the exit statement, which terminates the whole application. If the statements goto or break are used, they must jump within the loop, not outside it. The same goes for exception handling; exceptions must be caught within the loop.
Although these restrictions may sound somewhat limiting, non-conforming loops can easily be rewritten to follow these restrictions.
Getting Started with OpenMP的更多相关文章
- 应用OpenMP的一个简单的设计模式
小喵的唠叨话:最近很久没写博客了,一是因为之前写的LSoftmax后馈一直没有成功,所以在等作者的源码.二是最近没什么想写的东西.前两天,在预处理图片的时候,发现处理200w张图片,跑了一晚上也才处理 ...
- openmp 的使用
http://blog.csdn.net/gengshenghong/article/details/7003110 说明:这部分内容比较基础,主要是分析几个容易混淆的OpenMP函数,加以理解. ( ...
- OpenMP编程总结表
本文对OpenMP 2.0的全部语法——Macro(宏定义).Environment Variables(环境变量).Data Types(数据类型).Compiler Directives(编译指导 ...
- OpenMP共享内存并行编程详解
实验平台:win7, VS2010 1. 介绍 平行计算机可以简单分为共享内存和分布式内存,共享内存就是多个核心共享一个内存,目前的PC就是这类(不管是只有一个多核CPU还是可以插多个CPU,它们都有 ...
- OpenMP并行构造的schedule子句详解 (转载)
原文:http://blog.csdn.net/gengshenghong/article/details/7000979 schedule的语法为: schedule(kind, [chunk_si ...
- 利用OpenMP实现埃拉托斯特尼(Eratosthenes)素数筛法并行化 分类: 算法与数据结构 2015-05-09 12:24 157人阅读 评论(0) 收藏
1.算法简介 1.1筛法起源 筛法是一种简单检定素数的算法.据说是古希腊的埃拉托斯特尼(Eratosthenes,约公元前274-194年)发明的,又称埃拉托斯特尼筛法(sieve of Eratos ...
- 大数据并行计算利器之MPI/OpenMP
大数据集群计算利器之MPI/OpenMP ---以连通域标记算法并行化为例 1 背景 图像连通域标记算法是从一幅栅格图像(通常为二值图像)中,将互相邻接(4邻接或8邻接)的具有非背景值的像素集合提取出 ...
- android studio ndk使用openMP
好久没碰ndk了,之前都是在eclipse下写makefile配置c++程序的,现在发现主流都是用android studio,eclipse俨然已经被遗弃了,正好最近项目需要用openMP做算法加速 ...
- opencv 3.0 DPM Cascade 检测 (附带TBB和openMP加速)
opencv 3.0 DPM cascade contrib模块 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ ...
- openMP的一点使用经验【非原创】
按照百科上说的,针对于openmp的编程,最简单的就是在开头加个#include<omp.h>,然后在后面的for上加一行#pragma omp parallel for即可,下面的是较为 ...
随机推荐
- 小程序踩坑之不同屏幕下动态改变translate值
案例还原 小程序做一个进度条,可以通过拽转控制进度 那么肯定有一个进度条,不过小程序自己会做适配宽高 6s下这个div的width 是250 6splus就是276 但是问题来了,我拖拽用的是tran ...
- 17 nginx连接memcached
一:配置php扩展memcached wget http://memcached.googlecode.com/files/memcached-1.4.9.tar.gz # tar zvxf memc ...
- CPI
CPI (Consumer Price Index 物价指数) 是政府用来衡量通货膨胀的其中一个数据.通俗的讲,CPI就是市场上的货物价格增长百分比.一般市场经济国家认为CPI在2-3%属于可接受范围 ...
- XP,32/64位Win7,32/64位Win10系统【电脑城版】
本系统是10月最新完整版本的Windows10 安装版镜像,Win10正式版,更新了重要补丁,提升应用加载速度,微软和百度今天宣布达成合作,百度成为Win10 Edge浏览器中国默认主页和搜索引擎,系 ...
- python之Matplotlib 和Numpy
1.matplotlib http://www.cnblogs.com/TensorSense/p/6802280.html https://wenku.baidu.com/view/e1c15c9d ...
- 计算机网络 --万维网www
万维网是一个分布式的超媒体系统,客户程序向服务器程序发出请求,服务器程序向客户程序送回客户所需要的万维网文档.万维网必须解决的几个问题:1.怎样标志分布在整个因特网上的万维网文档?答:万维网使用统一的 ...
- poj 2151Check the difficulty of problems<概率DP>
链接:http://poj.org/problem?id=2151 题意:一场比赛有 T 支队伍,共 M 道题, 给出每支队伍能解出各题的概率~ 求 :冠军至少做出 N 题且每队至少做出一题的概率~ ...
- 九度OJ 1144:Freckles(斑点) (最小生成树)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1538 解决:760 题目描述: In an episode of the Dick Van Dyke show, little Richi ...
- 超限学习机 (Extreme Learning Machine, ELM) 学习笔记 (一)
1. ELM 是什么 ELM的个人理解: 单隐层的前馈人工神经网络,特别之处在于训练权值的算法: 在单隐层的前馈神经网络中,输入层到隐藏层的权值根据某种分布随机赋予,当我们有了输入层到隐藏层的权值之后 ...
- Django的模型层(2)---多表操作
多表操作 创建模型 实例:我们来假定下面这些概念,字段和关系 作者模型:一个作者有姓名和年龄. 作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息.作者详情模型和作者模型之间是一对 ...