【BZOJ3771】Triple 生成函数+FFT
【BZOJ3771】Triple
Description
Input
Output
Sample Input
4
5
6
7
Sample Output
5 1
6 1
7 1
9 1
10 1
11 2
12 1
13 1
15 1
16 1
17 1
18 1
样例解释
11有两种方案是4+7和5+6,其他损失值都有唯一方案,例如4=4,5=5,10=4+6,18=5+6+7.
HINT
所有数据满足:Ai<=40000
题解:当年以为这就是个桶,后来得知这玩意叫生成函数。
设所有斧头的生成函数为x,那么我们将x自乘1,2,3次,得到x,y,z,那么考虑每种情况被计算的次数。
x——a:1次
y——aa:1次,ab:2次
z——aaa:1次,aab:3次,abc:6次
那就把aa,aaa也求出来,用aa*b-aaa得到aab,就全统计出来了。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#define pi acos(-1.0)
using namespace std;
typedef long long ll;
struct cp
{
double x,y;
cp (double a,double b){x=a,y=b;}
cp (){}
cp operator + (cp a){return cp(x+a.x,y+a.y);}
cp operator - (cp a){return cp(x-a.x,y-a.y);}
cp operator * (cp a){return cp(x*a.x-y*a.y,x*a.y+y*a.x);}
cp operator * (double a){return cp(x*a,y*a);}
}n1[1<<19],n2[1<<19],n3[1<<19];
int n,m,top,len;
int ans[1<<19];
ll s[1<<19];
void FFT(cp *a,int f)
{
int i,j,k,h;
cp t;
for(i=k=0;i<len;i++)
{
if(i>k) swap(a[i],a[k]);
for(j=(len>>1);(k^=j)<j;j>>=1);
}
for(h=2;h<=len;h<<=1)
{
cp wn(cos(f*2*pi/h),sin(f*2*pi/h));
for(j=0;j<len;j+=h)
{
cp w(1,0);
for(k=j;k<j+h/2;k++) t=w*a[k+h/2],a[k+h/2]=a[k]-t,a[k]=a[k]+t,w=w*wn;
}
}
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd();
int i,a;
for(i=1;i<=n;i++) a=rd(),n1[a].x+=1,s[a]++,n2[a<<1].x+=1,n3[a*3].x+=1,m=max(m,a);
for(len=1;len<=m*3;len<<=1);
FFT(n1,1),FFT(n2,1),FFT(n3,1);
for(i=0;i<len;i++)
{
cp x=n1[i],y=n2[i],z=n3[i];
n2[i]=((x*x)-y)*(1.0/2),n3[i]=((x*x*x)-(x*y*3.0)+(z*2.0))*(1.0/6);
}
FFT(n2,-1),FFT(n3,-1);
for(i=0;i<len;i++) s[i]+=(ll)(n2[i].x/len+0.1)+(ll)(n3[i].x/len+0.1);
for(i=0;i<len;i++) if(s[i]) ans[++top]=i;
for(i=1;i<=top;i++) printf("%d %lld\n",ans[i],s[ans[i]]);
return 0;
}
【BZOJ3771】Triple 生成函数+FFT的更多相关文章
- 【BZOJ3771】Triple 生成函数 FFT 容斥原理
题目大意 有\(n\)把斧头,不同斧头的价值都不同且都是\([0,m]\)的整数.你可以选\(1\)~\(3\)把斧头,总价值为这三把斧头的价值之和.请你对于每种可能的总价值,求出有多少种选择方案. ...
- BZOJ3771 Triple(FFT+容斥原理)
思路比较直观.设A(x)=Σxai.先把只选一种的统计进去.然后考虑选两种,这个直接A(x)自己卷起来就好了,要去掉选同一种的情况然后除以2.现在得到了选两种的每种权值的方案数,再把这个卷上A(x). ...
- BZOJ 3771: Triple(生成函数 FFT)
Time Limit: 20 Sec Memory Limit: 64 MBSubmit: 911 Solved: 528[Submit][Status][Discuss] Description ...
- loj6570 毛毛虫计数(生成函数FFT)
link 巨佬olinr的题解 <-- olinr很强 考虑生成函数 考虑直径上点数>=4的毛毛虫的直径,考虑直径中间那些节点以及他上面挂的那些点的EGF \(A(x)=\sum_{i\g ...
- The Preliminary Contest for ICPC Asia Shanghai 2019 C Triple(FFT+暴力)
The Preliminary Contest for ICPC Asia Shanghai 2019 C Triple(FFT+暴力) 传送门:https://nanti.jisuanke.com/ ...
- 2018.12.31 bzoj3771: Triple(生成函数+fft+容斥原理)
传送门 生成函数经典题. 题意简述:给出nnn个数,可以从中选1/2/31/2/31/2/3个,问所有可能的和对应的方案数. 思路: 令A(x),B(x),C(x)A(x),B(x),C(x)A(x) ...
- bzoj3771: Triple(容斥+生成函数+FFT)
传送门 咳咳忘了容斥了-- 设\(A(x)\)为斧头的生成函数,其中第\(x^i\)项的系数为价值为\(i\)的斧头个数,那么\(A(x)+A^2(x)+A^3(x)\)就是答案(于是信心满满的打了一 ...
- bzoj 3771: Triple【生成函数+FFT+容斥原理】
瞎搞居然1A,真是吃鲸 n的范围只有聪明人能看见--建议读题3遍 首先看计数就想到生成函数,列出多项式A(x),然后分别考虑123 对于选一个的直接计数即可: 对于选两个的,\( A(x)^2 \), ...
- BZOJ3771: Triple【生成函数】
Description 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: "这把斧头,是不是你的?" 樵夫一看:" ...
随机推荐
- Action 和 Func 的用法以及区别
Action 无返回值 Func 有返回值,且最后一个参数为返回值 Action用法 public static void test(string s) { Console.WriteLine(&qu ...
- AC日记——[Sdoi2010]星际竞速 bzoj 1927
1927 思路: 连边,拆点: 每个点拆成i,i+n,都向t连边: i到t表示高速模式,i+n到t表示跳跃模式: 然后读入路径,如果u>v,则交换u,v: u向v+n连边: spfa跑最小费用: ...
- Codeforces Gym100812 L. Knights without Fear and Reproach-扩展欧几里得(exgcd)
补一篇以前的扩展欧几里得的题,发现以前写错了竟然也过了,可能数据水??? 这个题还是很有意思的,和队友吵了两天,一边吵一边发现问题??? L. Knights without Fear and Rep ...
- 网站安全测试工具GoLismero
网站安全测试工具GoLismero GoLismero是一款开源的安全测试框架.目前,它的测试目标主要为网站.该框架采用插件模式,实现用户所需要的功能.GoLismero默认自带了导入.侦测.扫描.攻 ...
- python 设计模式之观察者模式
观察者模式是一个软件设计模式,一个主题对象博包涵一系列依赖他的观察者,自动通知观察者的主题对象的改变,通常会调用每个观察者的一个方法.这个设计模式非常适用于分布式事件处理系统. 典型的在观察者模式下: ...
- 单堆石子的Nim Game
两个人轮流捡石子,只有一堆石子,石子数为n.每个人每次至少捡一个石子,至多捡m个.取走最后一个石子的人胜利,若我方先手,求能否胜利. 若n % (m + 1)为0,则必输,否则必赢.
- OpenSSL使用1(用OpenSSL生成自签名证书在IIS上搭建Https站点)(用于iOS的https访问)
前提: 先安装openssl,安装有两种方式,第一种直接下载安装包,装上就可运行:第二种可以自己下载源码,自己编译.这里推荐第一种. 安装包:http://slproweb.com/products/ ...
- 【京东个人中心】——Nodejs/Ajax/HTML5/Mysql爬坑之静态页面
一.引言 接着上一篇,京东个人中心的所有功能数据分析完成之后,现在需要把静态页面完成,实现过程中要用到的技术有:Bootstrap.html5表单新特性等.除此之外,还要利用Node.js的Expre ...
- kohana nginx的配置
kohana nginx的配置 location / { if (!-e $request_filename) { rewrite ^/(.*)$ /index.php? kohana_uri=/$1 ...
- vuex 中关于 mapMutations 的作用
mapMutations 工具函数会将 store 中的 commit 方法映射到组件的 methods 中.和 mapActions 的功能几乎一样,我们来直接看它的实现: export funct ...