Caocao's Bridges

题意:给个无向图,求出边权最小的桥。

一看,直接缩点,若无桥,输出-1,有桥,遍历下边,更新最小。。分分钟搞定,以为IA的。。一交wa。。。

坑点:1:若原图不连通,则无须派人去!输出0!;

2:若桥的权是0,则还有派一个人把炸弹拿去,输出1!

3:有重边。(按多条边算)。

哎!记住这个教训!以后做题

1:考虑边界或者特殊数据!(边权为0!n==1等)

2:考虑原图连通性!(这次考虑了原图就强连通。。没有考虑根本不连通!)

3:重边。这题的重边是按重边算(不是一条),而我采用的数据结构和算法恰好回避了这个问题(我用链式前向星和无向图自创tarjan模板可以重边按多边算(重边的点必在一个BCC中),若要重边按一条算,则用链星和第二套记录父亲点法tarjan来)。

这题WA真正元凶:不可原谅自己!在用e[i][0]时候,竟然又犯低级错误!!!i用边啊!用什么点!!!

#include<iostream>
#include<stack>
#include<queue>
#include<cstdio>
#include<cstring>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxv=1005,maxe=1000*1003;
int nume=0;int head[maxv];int e[maxe][3];
void inline adde(int i,int j,int c)
{
e[nume][0]=j;e[nume][1]=head[i];head[i]=nume;
e[nume++][2]=c;
e[nume][0]=i;e[nume][1]=head[j];head[j]=nume;
e[nume++][2]=c;
}
int dfn[maxv];int low[maxv];int vis[maxv];int ins[maxv]; stack<int>sta;
int bcc[maxv];int numb=0;int times=0; int vise[maxe];
int n,m;
void tarjan(int u)
{
dfn[u]=low[u]=times++;
ins[u]=1;
sta.push(u);
for(int i=head[u];i!=-1;i=e[i][1])
{
if(vise[i])continue;
int v=e[i][0];
if(!vis[v])
{
vis[v]=1;
vise[i]=vise[i^1]=1;
tarjan(v);
if(low[v]<low[u])low[u]=low[v];
}
else if(ins[v]&&dfn[v]<low[u])
{
low[u]=dfn[v];
}
}
if(low[u]==dfn[u])
{
numb++;
int cur;
do
{
cur=sta.top();
sta.pop();
ins[cur]=0;
bcc[cur]=numb;
}while(cur!=u);
}
}
void solve()
{
int marks=0;
for(int i=1;i<=n;i++)
{
if(!vis[i])
{
vis[i]=1;
tarjan(i);
marks++;
}
}
if(marks>=2) //坑1
{
printf("0\n");return ;
}
if(numb==1)
{
printf("-1\n");return ;
}
int mins=inf;
for(int i=1;i<=n;i++)
for(int j=head[i];j!=-1;j=e[j][1])
{
if(bcc[i]!=bcc[e[j][0]]) //e[j][0]竟然写成e[i][0]!!!sb!!
{
if(e[j][2]<mins)mins=e[j][2];
}
}
if(mins==0)mins=1; //坑2
printf("%d\n",mins);
}
void read_build()
{
int aa,bb,cc;
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&aa,&bb,&cc);
adde(aa,bb,cc);
}
}
void init()
{
numb=times=nume=0;
memset(vise,0,sizeof(vise));
for(int i=0;i<maxv;i++)
{
head[i]=-1;ins[i]=dfn[i]=low[i]=bcc[i]=vis[i]=0;
}
}
int main()
{
while(~scanf("%d%d",&n,&m)&&(n||m))
{
init();
read_build();
solve();
}
return 0;
}

hdu 4738 无向图缩点断桥 // 细节坑题的更多相关文章

  1. HDU 4738 Caocao's Bridges(Tarjan求桥+重边判断)

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  2. hdu 2242 无向图/求用桥一分为二后使俩个bcc点权值和之差最小并输出 /缩点+2次新图dfs

    题意如标题所述, 先无向图缩点,统计出每个bcc权,建新图,然后一遍dfs生成树,标记出每个点(新图)以及其子孙的权值之和.这样之后就可以dfs2来枚举边(原图的桥),更新最小即可. 调试了半天!原来 ...

  3. HDU 4738——Caocao's Bridges——————【求割边/桥的最小权值】

     Caocao's Bridges Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  4. HDU 4738 Caocao&#39;s Bridges(找割边)

    HDU 4738 Caocao's Bridges 题目链接 注意几个坑,可能重边,至少要派一个人去炸,没有连通的时候就不用炸了 代码: #include <cstdio> #includ ...

  5. Hdu 4738 Caocao's Bridges (连通图+桥)

    题目链接: Hdu 4738 Caocao's Bridges 题目描述: 有n个岛屿,m个桥,问是否可以去掉一个花费最小的桥,使得岛屿边的不连通? 解题思路: 去掉一个边使得岛屿不连通,那么去掉的这 ...

  6. hdu 5455 Fang Fang 坑题

    Fang Fang Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5455 ...

  7. hdu-4612(无向图缩点+树的直径)

    题意:给你n个点和m条边的无向图,问你如果多加一条边的话,那么这个图最少的桥是什么 解题思路:无向图缩点和树的直径,用并查集缩点: #include<iostream> #include& ...

  8. HDOJ 5409 CRB and Graph 无向图缩块

    无向图缩块后,以n所在的块为根节点,dp找每块中的最大值. 对于每一个桥的答案为两块中的较小的最大值和较小的最大值加1 CRB and Graph Time Limit: 8000/4000 MS ( ...

  9. POJ 3177 (Redundant Paths) —— (有重边,边双联通,无向图缩点)

    做到这里以后,总算是觉得tarjan算法已经有点入门了. 这题的题意是,给出若干个点和若干条边连接他们,在这个无向图中,问至少增加多少条边可以使得这个图变成边双联通图(即任意两点间都有至少两条没有重复 ...

随机推荐

  1. .NET 与MVC的区别

    .NET MVC与三层架构 二者都是架构模式,并且也有一定的共存度,在实际开发中,严格区分意义不大. 基于最近涉及到这部分知识就在复习下,编程过程中,基础概念更重要,而不是技术. 1.三层架构:即UI ...

  2. Linux命令之---mkdir

    命令简介 mkdir 命令用来创建指定的名称的目录,要求创建目录的用户在当前目录中具有写权限,并且指定的目录名不能是当前目录中已有的目录. 命令格式 mkdir [选项] 目录...(这里可以是多个目 ...

  3. 从头开始学习数据库及ADO.NET——竹子整理

    目前为止,学习编程一年有余,写过管理系统,写过商城,写过桌面,接触的多了,乱七八糟的点太多,一堆前段框架,后台类库,纷纷杂杂,更新迭代之快也是令人咋舌.于是我就在想,作为一名程序员,哪些内容是实打实的 ...

  4. 【PyTorch深度学习】学习笔记之PyTorch与深度学习

    第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分 ...

  5. TCP/IP网络编程之进程间通信

    进程间通信基本概念 进程间通信意味着两个不同进程间可以交换数据,为了完成这一点,操作系统中应提供两个进程可以同时访问的内存空间.但我们知道,进程具有完全独立的内存结构,就连通过fork函数创建的子进程 ...

  6. 基类View

    尽管类视图看上去类的种类繁多,但每个类都是各司其职的,且从类的命名就可以很容易地看出这个类的功能.大致可分为如下三个大的功能块,分别由三个类提供对应的方法: 处理 HTTP 请求.根据 HTTP 请求 ...

  7. 【Luogu P1637】 三元上升子序列

    对于每个数$a_i$,易得它对答案的贡献为 它左边比它小的数的个数$\times$它右边比它大的数的个数. 可以离散化后再处理也可以使用动态开点的线段树. 我使用了动态开点的线段树,只有需要用到这个节 ...

  8. flask url_for()和redirect的区别

    一. 两者用来重定向的时候,被操作的对象不同. redirect直接是url,就是app.route的路径参数. url_for()是对函数进行操作. from flask import Flask, ...

  9. jmeter非GUI模式如何压测并生成测试报告

    在启动Jmeter时,我们会看到这样一句提示: 不要使用GUI模式(界面模式)进行负载测试,GUI模式只能用于创建测试和调试.进行负载测试时,需要时用非GUI模式. 那么为什么进行负载测试时一定要用非 ...

  10. cookie和session机制区别

    会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的会话跟踪技术是Cookie与Session.Cookie通过在客户端记录信息确定用户身份,Session通过在服务器端 ...