64. Minimum Path Sum(中等, 又做出一个DP题, 你们非问我开不开心,当然开心喽!^^)
Given an m x n grid filled with nonnegative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
动态规划问题.
- 状态转移公式:
F[i,j] = min(F[i,j-1], F[i-1,j]) + A[i,j]
- 最优子结构:
F[i,j-1], F[i-1,j] 和 A[i,j]
- 边界:
F[0,0] = A[0,0];
参照例子:
1 2 3 4
4 3 2 1
2 1 2 3
实现中有三种选择:
- 最优的: \(O(m*n)\) time, \(O(min(m, n))\) extra space;(maintain an array)
- 次优的: \(O(m*n)\) time, \(O(m)+O(n)\) extra space;(维护俩数组,长度分别m, n)
- 最差的: \(O(m*n)\) time, \(O(m*n)\) extra space.(maintain a matrix, m*n)
自个想法,自个最优空间复杂度代码:
\(O(m*n)\) time, \(O(min(m, n))\) extra space;
// method 2
// DP
// F[i,j] = min(F[i,j-1], F[i-1,j] + A[i,j])
// O(m*n) time, O(min(m,n)) extra space
int minPathSum(vector<vector<int>>& A) {
const int m = A.size(), n = A[0].size();
if (m == 0) return 0;
if (m == 1 && n == 1) return A[0][0];
vector<int> dp(n);
// load the 0st row of A into dp
dp[0] = A[0][0];
for (int j = 1; j < n; j++)
dp[j] = A[0][j] + dp[j - 1];
// fill none first row and col in dp by state transfer equation
for (int i = 1; i < m; i++) {
for (int j = 0; j < n; j++) {
if (j == 0) dp[j] = dp[j] + A[i][0];
else dp[j] = min(dp[j - 1], dp[j]) + A[i][j];
}
}
return dp[n - 1];
}
自个想法,自个差空间复杂度代码:
\(O(m*n)\) time, \(O(m*n)\) extra space;
// method 1
// DP
// F[i,j] = min(F[i,j-1], F[i-1,j]) + A[i,j]
// O(m*n) time, O(m*n) extra space
// not good
int minPathSum(vector<vector<int>>& A) {
const int m = A.size(), n = A[0].size();
if (m == 0) return 0;
if (m == 1 && n == 1) return A[0][0];
// initialize dp(m*n) matrix
vector < vector<int> > dp(m);
for (int i = 0; i < m; i++)
dp[i].resize(n);
// fill first row in dp
dp[0][0] = A[0][0];
for (int j = 1; j < n; j++)
dp[0][j] = A[0][j] + dp[0][j - 1];
// fill first col in dp
for (int i = 1; i < m; i++)
dp[i][0] = A[i][0] + dp[i - 1][0];
// fill none first row and col in dp by state transfer equation
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + A[i][j];
}
}
return dp[m - 1][n - 1];
}
随机推荐
- 新概念英语(1-5)Nice to meet you.
Is Chang-woo Chinese? Blake:Good morning. B:Good morning, Mr Blake. Blake:This is Miss Sophie Dupont ...
- vue2.0+koa2+mongodb实现注册登录
前言 前段时间和公司一个由技术转产品的同事探讨他的职业道路,对我说了一句深以为然的话: "不要把自己禁锢在某一个领域,技术到产品的转变,首先就是思维上的转变.你一直做前端,数据的交互你只知道 ...
- java 数组排序方法整理,简单易懂,
1.快速排序:首先是最简单的Array.sort,直接进行排序: public static void main(String[] args) { int[] arr = {4,3,5,1,7,9,3 ...
- JAVAFX-5 开发应用
fx 属性与布局 属性与布局是一个具备gui开发能力的开发者,快速进入开发必备的知识储备,下面简单说一说常用的属性,与布局 颜色 颜色 在 javafx.scene.paint.Color 类中提供了 ...
- Python生成随机验证码
Python生成随机验证码,需要使用PIL模块. 安装: pip3 install pillow 基本使用 1.创建图片 from PIL import Image img = Image.new(m ...
- Django:(博客系统)使用使用mysql数据&创建post/category/tag实体,并同步到数据中
背景: 之前也读过一些关于django的一些书,看过别人写的一些博客系统.但是总有一种看别人的都会,但自己写不出来的感觉,于是为了加深对django的学习就开始动手学习了. 环境搭建: 环境:使用py ...
- 01、NetCore2.0优化之Web服务器 与 IIS解耦
01.NetCore2.0优化之Web服务器 与 IIS解耦 在Asp.Net Core 2.0中,是如何实现跨平台的?不使用IIS了,在linux上的WebServer是什么? ---------- ...
- 机器学习:scipy和sklearn中普通最小二乘法与多项式回归的使用对
相关内容连接: 机器学习:Python中如何使用最小二乘法(以下简称文一) 机器学习:形如抛物线的散点图在python和R中的非线性回归拟合方法(以下简称文二) 有些内容已经在上面两篇博文中提到了,所 ...
- 走在spring的路上。。。。
一些spring的概念理解: 1.为什么需要spring? spring与我们平时用的工厂模式最大的差别在于,工厂模式设计还需要单独去建一个工厂类并去维护它, 而spring可只通过配置文件便可创建并 ...
- ML笔记:Classification: Probabilistic Generative Model
用回归来做分类: 远大于1的点对于回归来说就是个error, 为了让这些点更接近1,会得到紫色线. 可见,回归中定义模型好坏的方式不适用于分类中.---回归会惩罚那些太过正确的点 如何计算未出现在训练 ...