OpenCV 可以使用光流法检测物体运动,贴上代码以及效果。

// opticalflow.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"

// Example 10-1. Pyramid Lucas-Kanade optical flow code
//
/* *************** License:**************************
   Oct. 3, 2008
   Right to use this code in any way you want without warrenty, support or any guarentee of it working.

   BOOK: It would be nice if you cited it:
   Learning OpenCV: Computer Vision with the OpenCV Library
     by Gary Bradski and Adrian Kaehler
     Published by O'Reilly Media, October 3, 2008

   AVAILABLE AT:
     http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134
     Or: http://oreilly.com/catalog/9780596516130/
     ISBN-10: 0596516134 or: ISBN-13: 978-0596516130    

   OTHER OPENCV SITES:
   * The source code is on sourceforge at:
     http://sourceforge.net/projects/opencvlibrary/
   * The OpenCV wiki page (As of Oct 1, 2008 this is down for changing over servers, but should come back):
     http://opencvlibrary.sourceforge.net/
   * An active user group is at:
     http://tech.groups.yahoo.com/group/OpenCV/
   * The minutes of weekly OpenCV development meetings are at:
     http://pr.willowgarage.com/wiki/OpenCV
   ************************************************** */

#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
#include <stdio.h>

const int MAX_CORNERS = 500;
int main(int argc, char** argv) {
   // Initialize, load two images from the file system, and
   // allocate the images and other structures we will need for
   // results.
	//
	IplImage* imgA = cvLoadImage("OpticalFlow0.jpg",CV_LOAD_IMAGE_GRAYSCALE);
	IplImage* imgB = cvLoadImage("OpticalFlow1.jpg",CV_LOAD_IMAGE_GRAYSCALE);
	CvSize      img_sz    = cvGetSize( imgA );
	int         win_size = 10;
	IplImage* imgC = cvLoadImage("OpticalFlow1.jpg",CV_LOAD_IMAGE_UNCHANGED);

	// The first thing we need to do is get the features
	// we want to track.
	//
	IplImage* eig_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 );
	IplImage* tmp_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 );
	int              corner_count = MAX_CORNERS;
	CvPoint2D32f* cornersA        = new CvPoint2D32f[ MAX_CORNERS ];
	cvGoodFeaturesToTrack(
		imgA,
		eig_image,
		tmp_image,
		cornersA,
		&corner_count,
		0.01,
		5.0,
		0,
		3,
		0,
		0.04
	);
	cvFindCornerSubPix(
		imgA,
		cornersA,
		corner_count,
		cvSize(win_size,win_size),
		cvSize(-1,-1),
		cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03)
	);
	// Call the Lucas Kanade algorithm
	//
	char features_found[ MAX_CORNERS ];
	float feature_errors[ MAX_CORNERS ];
	CvSize pyr_sz = cvSize( imgA->width+8, imgB->height/3 );
	IplImage* pyrA = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 );
  IplImage* pyrB = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 );
  CvPoint2D32f* cornersB        = new CvPoint2D32f[ MAX_CORNERS ];
  cvCalcOpticalFlowPyrLK(
     imgA,
     imgB,
     pyrA,
     pyrB,
     cornersA,
     cornersB,
     corner_count,
     cvSize( win_size,win_size ),
     5,
     features_found,
     feature_errors,
     cvTermCriteria( CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, .3 ),
     0
  );
  // Now make some image of what we are looking at:
  //
  for( int i=0; i<corner_count; i++ ) {
     if( features_found[i]==0|| feature_errors[i]>550 ) {
 //       printf("Error is %f/n",feature_errors[i]);
        continue;
     }
 //    printf("Got it/n");
     CvPoint p0 = cvPoint(
        cvRound( cornersA[i].x ),
        cvRound( cornersA[i].y )
     );
     CvPoint p1 = cvPoint(
        cvRound( cornersB[i].x ),
        cvRound( cornersB[i].y )
     );
     cvLine( imgC, p0, p1, CV_RGB(255,0,0),2 );
  }
  cvNamedWindow("ImageA",0);
  cvNamedWindow("ImageB",0);
  cvNamedWindow("LKpyr_OpticalFlow",0);
  cvShowImage("ImageA",imgA);
  cvShowImage("ImageB",imgB);
  cvShowImage("LKpyr_OpticalFlow",imgC);
  cvWaitKey(0);
  return 0;
}

两张测试图片:

OpticalFlow0.jpg

OpticalFlow1.jpg

运行结果:

OpenCV 使用光流法检测物体运动的更多相关文章

  1. OpenCV LK光流法测试

    OpenCV版本: 3.2.0 例程文件目录/samples/cpp/lkdemo.cpp 原始程序是采集相机数据,台式机没有摄像头,用Euroc测试集,偷ORB_SLAM2 /Examples/Mo ...

  2. 【Matlab】运动目标检测之“光流法”

    光流(optical flow) 1950年,Gibson首先提出了光流的概念,所谓光流就是指图像表现运动的速度.物体在运动的时候之所以能被人眼发现,就是因为当物体运动时,会在人的视网膜上形成一系列的 ...

  3. 【图像处理】openCV光流法追踪运动物体

    openCV光流法追踪运动物体 email:chentravelling@163.com 一.光流简单介绍 摘自:zouxy09 光流的概念是Gibson在1950年首先提出来的.它是空间运动物体在观 ...

  4. OpenCV Using Python——基于SURF特征提取和金字塔LK光流法的单目视觉三维重建 (光流、场景流)

    https://blog.csdn.net/shadow_guo/article/details/44312691 基于SURF特征提取和金字塔LK光流法的单目视觉三维重建 1. 单目视觉三维重建问题 ...

  5. 目标跟踪之Lukas-Kanade光流法

    转载自:http://blog.csdn.net/u014568921/article/details/46638557 光流是图像亮度的运动信息描述.光流法计算最初是由Horn和Schunck于19 ...

  6. 目标跟踪之Lukas-Kanade光流法(转)

    光流是图像亮度的运动信息描述.光流法计算最初是由Horn和Schunck于1981年提出的,创造性地将二维速度场与灰度相联系,引入光流约束方程,得到光流计算的基本算法.光流计算基于物体移动的光学特性提 ...

  7. 光流法(optical flow)

    光流分为稠密光流和稀疏光流 光流(optic flow)是什么呢?名字很专业,感觉很陌生,但本质上,我们是最熟悉不过的了.因为这种视觉现象我们每天都在经历.从本质上说,光流就是你在这个运动着的世界里感 ...

  8. HS 光流法详解

    前言 本文较为详细地介绍了一种经典的光流法 - HS 光流法. 光流法简介 当人的眼睛与被观察物体发生相对运动时,物体的影像在视网膜平面上形成一系列连续变化的图像,这一系列变化的图像信息不断 &quo ...

  9. LK 光流法简介

    前言 若假定一个局部区域的像素运动是一致的,则可以用这个新的约束条件替代前文中提到的全局速度平滑约束条件.这种光流算法就叫做 LK 光流法. LK 光流法的推导 首先,需要推导出光流约束方程. 这一步 ...

随机推荐

  1. 纪念 参与GitHub上第一个组织

    颇为起伏的一天. 今天大连的风, 甚是喧嚣. 不过,很高兴,小项目被fork了,也成功成为了一个开源贡献者. https://github.com/HostsTools 组织 上的那个Windows- ...

  2. ZooKeeper之(三)工作原理

    3.1 系统架构 ZooKeeper集群是由多台机器组成的,每台机器都充当了特定的角色,各种角色在协作过程中履行自己的任务,从而对外提供稳定.可靠的服务. 由上图可知,ZooKeeper集群由多台机器 ...

  3. Android系统对话框——自定义关闭

    Android系统对话框--自定义关闭 Dialog是我们在项目中经常用到的,5.x以后的Dialog也很好看,很安卓风,Android也给我们提供了新的包,低版本可以显示一样的效果.我们在使用的导入 ...

  4. tomcat生命周期的管理——生命周期统一接口Lifecycle

    我们知道Tomcat的架构设计是清晰的.模块化的,其拥有很多组件,假如我们要启动Tomcat,可以一个一个启动组件,但这样启动有很多缺点,不仅麻烦,而且容易漏了组件启动,还会对后面动态组件扩展带来麻烦 ...

  5. ListView之侧滑删除

    SwipeMenuListView 是一个为listview添加item侧滑菜单的开源库,项目地址:https://github.com/baoyongzhang/SwipeMenuListView ...

  6. python地理数据处理库geopy

    http://blog.csdn.net/pipisorry/article/details/52205266 python地理位置处理 python地理编码地址以及用来处理经纬度的库 GeoDjan ...

  7. 第一行代码阅读笔记---AndroidMainfest.xml分析

    按照这本书的指引,我随作者一样创建了一个安卓应用,开始了安卓开发的启程. 找到AndroidMainfest.xml这个文件,打开后看到了我创建的Activity在这个文件里被成功注册,文件内容如下: ...

  8. javascript中的AJAX

    兼容地获得XMLHttpRequest对象: var xhr = null; if(window.XMLHttpRequest){ //非IE浏览器 xhr = window.XMLHttpReque ...

  9. 学习TensorFlow,生成tensorflow输入输出的图像格式

    TensorFLow能够识别的图像文件,可以通过numpy,使用tf.Variable或者tf.placeholder加载进tensorflow:也可以通过自带函数(tf.read)读取,当图像文件过 ...

  10. Java基础---Java---网络编程---TCP、UDP、UDP-键盘录入方式数据、Socket、TCP复制文件、UDP-聊天

    网络编程 网络模型 *OSI参考模型 *Tcp/IP参考模型 网络通读要素 *IP地址 *端口号 *传输协议 1.找到对方Ip 2.数据要发送到对方指定的的应用程序上,为了标识这些应用程序,所经给这些 ...