局部加权线性回归 

【转载时请注明来源】:http://www.cnblogs.com/runner-ljt/

Ljt

作为一个初学者,水平有限,欢迎交流指正。

线性回归容易出现过拟合或欠拟合的问题。

局部加权线性回归是一种非参数学习方法,在对新样本进行预测时,会根据新的权值,重新训练样本数据得到新的参数值,每一次预测的参数值是不相同的。

权值函数:

t用来控制权值的变化速率(建议对于不同的样本,先通过调整t值确定合适的t)

不同t值下的权值函数图像:

局部加权线性回归R实现:

#Locally Weighted Linear Regression 局部加权回归(非参数学习方法)

##x为数据矩阵(mxn m:样本数 n:特征数 );y观测值(mx1);xp为需要预测的样本特征,t权重函数的权值变化速率
#error终止条件,相邻两次搜索结果的幅度;
#step为设定的固定步长;maxiter最大迭代次数,alpha,beta为回溯下降法的参数 LWLRegression<-function(x,y,xp,t,error,maxiter,stepmethod=T,step=0.001,alpha=0.25,beta=0.8)
{
w<-exp(-0.5*(x-xp)^2./t^2) #权重函数,w(i)表示第i个样本点的权重,t控制权重的变化速率
m<-nrow(x)
x<-cbind(matrix(1,m,1),x)
n<-ncol(x)
theta<-matrix(0,n,1) #theta初始值都设置为0
iter<-0
newerror<-1 while((newerror>error)|(iter<maxiter)){
iter<-iter+1
h<-x%*%theta
des<-t(t(w*(h-y))%*%x) #梯度 #回溯下降法求步长t
if(stepmethod==T){
step=1
new_theta<-theta-step*des
new_h<-x%*%new_theta
costfunction<-t(w*(h-y))%*%(h-y) #(最小二乘损失函数)局部加权线性回归损失函数
new_costfunction<-t(w*(new_h-y))%*%(new_h-y)
#回溯下降法求步长step
while(new_costfunction>costfunction-alpha*step*sum(des*des)){
step<-step*beta
new_theta<-theta-step*des
new_h<-x%*%new_theta
new_costfunction<-t(w*(new_h-y))%*%(new_h-y)
}
newerror<-t(theta-new_theta)%*%(theta-new_theta)
theta<-new_theta
} #直接设置固定步长
if(stepmethod==F){
new_theta<-theta-step*des
newerror<-t(theta-new_theta)%*%(theta-new_theta)
theta<-new_theta
}
} xp<-cbind(1,xp)
yp<-xp%*%theta
#costfunction<-t(x%*%theta-y)%*%(x%*%theta-y)
#result<-list(yp,theta,iter,costfunction)
#names(result)<-c('拟合值','系数','迭代次数','误差')
#result
yp
}

  

运用局部线性加权回归预测每个样本点x对于的y值,连接各预测值后得到一条平滑曲线,反映出y与x之间的非线性关系。

> t(x)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15]
[1,] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
> t(y)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15]
[1,] 111 115 121 123 131 130 140 136 142 145 147 151 148 151 148
>
> lm(y~x) Call:
lm(formula = y ~ x) Coefficients:
(Intercept) x
-50.245 2.864 > yy<--50.245+2.864*x
> t(yy)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15]
[1,] 115.867 118.731 121.595 124.459 127.323 130.187 133.051 135.915 138.779 141.643 144.507 147.371 150.235 153.099 155.963
>
> g<-apply(x,1,function(xp){LWLRegression(x,y,xp,3,1e-7,100000,stepmethod=F,step=0.00001,alpha=0.25,beta=0.8)})
>
> t(g)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
[1,] 116.093 119.0384 122.1318 125.3421 128.6115 131.862 135.009 137.9771 140.7136 143.194 145.4244 147.4373 149.2831 151.018
[,15]
[1,] 152.693
>
> plot(x,y,pch=20,xlim=c(57,73),ylim=c(109,157))
> lines(x,y,col='green')
> lines(x,yy,col='blue')
> points(x,g,pch=21)
> lines(x,g,col='red')
> legend("bottomright",legend=c('散点图','拟合直线','加权散点图'),lwd=1,col=c('green','blue','red'))
>

  

Locally Weighted Linear Regression 局部加权线性回归-R实现的更多相关文章

  1. Locally weighted linear regression(局部加权线性回归)

    (整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 前面几篇博客主要介绍了线性回归的学习算法,那么它有什么不足的地方么 ...

  2. 局部加权回归、欠拟合、过拟合(Locally Weighted Linear Regression、Underfitting、Overfitting)

    欠拟合.过拟合 如下图中三个拟合模型.第一个是一个线性模型,对训练数据拟合不够好,损失函数取值较大.如图中第二个模型,如果我们在线性模型上加一个新特征项,拟合结果就会好一些.图中第三个是一个包含5阶多 ...

  3. 局部权重线性回归(Locally weighted linear regression)

    在线性回归中,因为对參数个数选择的问题是在问题求解之前已经确定好的,因此參数的个数不能非常好的确定,假设參数个数过少可能拟合度不好,产生欠拟合(underfitting)问题,或者參数过多,使得函数过 ...

  4. 局部加权线性回归(Locally weighted linear regression)

    首先我们来看一个线性回归的问题,在下面的例子中,我们选取不同维度的特征来对我们的数据进行拟合. 对于上面三个图像做如下解释: 选取一个特征,来拟合数据,可以看出来拟合情况并不是很好,有些数据误差还是比 ...

  5. 线性回归(最小二乘法、批量梯度下降法、随机梯度下降法、局部加权线性回归) C++

    We turn next to the task of finding a weight vector w which minimizes the chosen function E(w). Beca ...

  6. Robust Locally Weighted Regression 鲁棒局部加权回归 -R实现

    鲁棒局部加权回归 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 算法参考文献: (1) Robust L ...

  7. matlab练习程序(局部加权线性回归)

    通常我们使用的最小二乘都需要预先设定一个模型,然后通过最小二乘方法解出模型的系数. 而大多数情况是我们是不知道这个模型的,比如这篇博客中z=ax^2+by^2+cxy+dx+ey+f 这样的模型. 局 ...

  8. 斯坦福CS229机器学习课程笔记 Part1:线性回归 Linear Regression

    机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-sq ...

  9. Locally weighted regression algorithm

    在此引出另一种模型:Locally weighted regression algorithm(LWLR/LWR),通过名字我们可以推断,这是一种更加关注局部变化的模型.的确如此,在普通的linear ...

随机推荐

  1. Java内存泄漏分析系列之一:使用jstack定位线程堆栈信息

    原文地址:http://www.javatang.com 前一段时间上线的系统升级之后,出现了严重的高CPU的问题,于是开始了一系列的优化处理之中,现在将这个过程做成一个系列的文章. 基本概念 在对J ...

  2. 状态模式、职责链模式——省去if-else的繁琐结构

    小时候写日记都是这么写的:上午七点起床,八点之前洗脸刷牙吃早饭,十二点之前好好上课,中午一点,吃午饭,下午两点到六点,上课,下课,找请假,明天妈妈要带我去姥姥家,九点之前,看动画片,九点钟,收拾去姥姥 ...

  3. Android开发技巧——BaseAdapter的另一种优雅封装

    RecyclerView虽然因其灵活性.高效性等特点而备受好评,但也不是一定得用它把ListView给替代掉.在某些场景中,ListView还是相对更适合的.比如数据量不大,不频繁更新,并且需要简单地 ...

  4. Lucene 6.0下使用IK分词器

    Lucene 6.0使用IK分词器需要修改修改IKAnalyzer和IKTokenizer. 使用时先新建一个MyIKTokenizer类,一个MyIkAnalyzer类: MyIKTokenizer ...

  5. Android二维码扫描、生成

    Android二维码扫描.生成 现在使用二维码作为信息的载体已经越来越普及,那么二维码的生成以及扫描是如何实现的呢 google为我们提供了zxing开源库供我们使用 zxing GitHub源码地址 ...

  6. Android 5.0新控件——FloatingActionButton(悬浮按钮)

    Android 5.0新控件--FloatingActionButton(悬浮按钮) FloatingActionButton是5.0以后的新控件,一个悬浮按钮,之所以叫做悬浮按钮,主要是因为自带阴影 ...

  7. 判断&数学&生活

    作者:黄永刚 初次接触<概率论与数理统计>这门课的时候,脑袋中只有三个词:黑球.白球.袋子,所有的课程内容就是先取,后取,接触一月之后成功的被放趴下了,因此对于这门课程是没有什么好感的,考 ...

  8. SpringMVC+BUI实现文件上传(附详解,源码下载)

    中午有限时间写这博文,前言就不必多说了,直奔主题吧. BUI是一个前端框架,关于BUI的介绍请看博主的文章那些年用过的一些前端框架. 下面我们开始实例的讲解! 一.效果演示: 上传成功后,会发现本地相 ...

  9. javascript之内置函数

    1.常规函数 (1)alert函数:显示一个警告对话框,包括一个OK按钮. (2)confirm函数:显示一个确认对话框,包括OK.Cancel按钮. (3)escape函数:将字符转换成Unicod ...

  10. 自定义gradview

    http://blog.csdn.net/jdsjlzx/article/details/7525724 虽然Android已自带了GridView,但是,却不够灵活,同时也不能自由添加控件,因此,本 ...