bzoj1913[Apio2010]signaling 信号覆盖 计算几何
1913: [Apio2010]signaling 信号覆盖
Time Limit: 20 Sec Memory Limit: 64 MB
Submit: 1583 Solved: 646
[Submit][Status][Discuss]
Description

Input
Output
Sample Input
0 2
4 4
0 0
2 0
Sample Output
HINT
3.5, 3.50, 3.500, … 中的任何一个输出均为正确。此外,3.49, 3.51,
3.499999,…等也都是可被接受的输出。
【数据范围】
100%的数据保证,对于 i = 1, 2, .., n, 第 i 个房子的坐标(xi, yi)为整数且
–1,000,000 ≤ xi, yi ≤ 1,000,000. 任何三个房子不在同一条直线上,任何四个房子不
在同一个圆上;
40%的数据,n ≤ 100;
70%的数据,n ≤ 500;
100%的数据,3 ≤ n ≤ 1,500。
题意就是求任选三个点围成一个圆,圆内包含的点数的期望
可以由 sum/C(n,3) 得到,那么要求的就是sum即任选三个点构成圆包含点的个数的总和
暴力枚举肯定不行,。。
网上的题解说的是求凹凸四边形个数,开始不是很懂,后来莫名其妙懂了。
我的理解是:
对于任意的一个三点确定的圆,如果它其中包含了一些点,那么这三点和里面包含的任意一点可以构成四边形
如果是凹四边形,只可能由外边的三点形成圆包含它
如果是凸四边形,对于同一个四边形来说可能有两种形成圆的方式使得圆包含这四个点
所以寻找四边形个数就可以了,关键就是把每个四边形看成了三个点形成一个圆+一个点在圆内贡献的答案
凸四边形数s2不好处理,可以处理凹四边形s1的个数,s1+s2=C(n,4)可以算出s2
处理凹四边形,用四边形总数-凸的个数
枚举每一个点作为凹四边形里面的点,考虑另外三点:
如果要构成凹四边形,那么一定有两条边的角度大于180,枚举每一个点,找到它的下一个目标点(与他构成角大于180度)计算即可
#include<bits/stdc++.h>
#define ll long long
#define N 1505
using namespace std;
int n,tp;ll s1,s2;
struct P{
int x,y;double ang;
P operator - (const P &b)const{return (P){x-b.x,y-b.y};}
bool operator < (const P &b)const{return ang<b.ang;}
}a[N],q[N];
ll crs(P a,P b){return (ll)a.x*b.y-(ll)a.y*b.x;}
ll solve(int x){
tp=;
ll all=1ll*(n-)*(n-)*(n-)/;
for(int i=;i<=n;i++){
if(i==x)q[]=a[i];
else q[++tp]=a[i];
}
for(int i=;i<=tp;i++){
P tmp=q[i]-q[];
q[i].ang=atan2(tmp.y,tmp.x);
}
sort(q+,q++tp);
int p=,cnt=;
for(int i=;i<=tp;i++){
while(crs(q[i]-q[],q[p]-q[])>=){
p=p%tp+;cnt++;
if(p==i)break;
}
all-=cnt*(cnt-)/;cnt--;
}
return all;
}
int main(){
scanf("%d",&n);
if(n==){puts("3.00");return ;}
for(int i=;i<=n;i++)
scanf("%d%d",&a[i].x,&a[i].y);
for(int i=;i<=n;i++)s1+=solve(i);
s2=1ll*n*(n-)*(n-)*(n-)/-s1;
double ans=*s2+s1;ans/=1ll*n*(n-)*(n-)/;
printf("%.6lf",ans+);
return ;
}
bzoj1913[Apio2010]signaling 信号覆盖 计算几何的更多相关文章
- bzoj1913: [Apio2010]signaling 信号覆盖
传送门 题解传送门 //Achen #include<algorithm> #include<iostream> #include<cstring> #includ ...
- 【BZOJ-1913】signaling信号覆盖 极角排序 + 组合
1913: [Apio2010]signaling 信号覆盖 Time Limit: 20 Sec Memory Limit: 64 MBSubmit: 1232 Solved: 506[Subm ...
- 【bzoj1913】 Apio2010—signaling 信号覆盖
http://www.lydsy.com/JudgeOnline/problem.php?id=1913 (题目链接) 题意 给出一个平面上n个点,求任选3个点画一个圆所包含的点的期望值. Solut ...
- 【BZOJ】1913: [Apio2010]signaling 信号覆盖(计算几何+计数)
题目 传送门:QWQ 分析 人类智慧题,不会做...... 详细题解1 详细题解2 总体思路是考虑四边形 讨论凹四边形凸四边形,最后加一个单调性优化省掉个$ O(n) $ 代码 代码感觉好短 ...
- bzoj 1913: [Apio2010]signaling 信号覆盖【旋转卡壳(?)】
参考:https://blog.csdn.net/qpswwww/article/details/45334033 讲的很清楚 做法比较像旋转卡壳但是具体是不是我也不清楚.. 首先知道只要求出每种方案 ...
- [BZOJ1913][APIO2010]信号覆盖(计算几何+计数)
1913: [Apio2010]signaling 信号覆盖 Time Limit: 20 Sec Memory Limit: 64 MBSubmit: 1658 Solved: 672[Subm ...
- [BZOJ 1913] signaling 信号覆盖
Link:https://www.lydsy.com/JudgeOnline/problem.php?id=1913 TIP:(注意,这题只能输出6位才能过,7位都不行wtf?) Algorithm: ...
- [BZOJ1911][BZOJ1912][BZOJ1913]APIO2010解题报告
特别行动队 Description 这个好像斜率优化不是一般地明显了啊...只不过要分a的正负两种情况考虑是维护上凸还是下凸 /********************************** ...
- 家用wifi信号覆盖增强扩展实用指南
家用wifi信号覆盖增强扩展实用指南 现在网上很多号称穿墙王的无线路由器,但是一般用起来效果都不理想,其实最主要的原因还是家里面一般每个房间不大,但是墙比较多.并且一般也没有一个所谓的中心点放置路由器 ...
随机推荐
- iOS 播放音频的几种方法
Phone OS 主要提供以下了几种播放音频的方法: System Sound Services AVAudioPlayer 类 Audio Queue Services OpenAL 1. Syst ...
- 【iOS】swift-Binary operator '|' cannot be applied to two UIViewAutoresizing operands
let view = UIView(frame: CGRect(x: 0, y: 0, width: 320, height: 568)) addSubview(view) view.autoresi ...
- JAVA_SE基础——28.封装
黑马程序员blog... 面向对象三大特征:1. 封装2. 继承3 多态. 今天我们先学习第一大特征,封装. 封装:是指隐藏对象的属性和实现细节,仅对外提供公共访问方式. 好处: 1. 将变 ...
- Linux "零拷贝" sendfile函数中文说明及实际操作
Sendfile函数说明 #include ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count); sendfile ...
- Jenkins中展示HTML测试报告
背景:测试报告是用reportNG生成的,属于java自动化测试项目. 1) 安装插件 首先要安装HTML Publisher plugin,这个在插件管理里面搜索并安装即可,如下我已 ...
- [机器学习Lesson3] 梯度下降算法
1. Gradient Descent(梯度下降) 梯度下降算法是很常用的算法,可以将代价函数J最小化.它不仅被用在线性回归上,也被广泛应用于机器学习领域中的众多领域. 1.1 线性回归问题应用 我们 ...
- Linux实用的网站
ABCDOCKER网站 https://www.abcdocker.com/ 徐亮伟网站 http://www.xuliangwei.com/ 安装centos物理服务 ...
- SpringBoot(六):springboot热部署
在j2ee项目开发中,热部署插件是JRebel.JRebel的使用为开发人员带来了极大的帮助,且挺高了开发便捷.而在SpringBoot开发生态环境中,SpringBoot热部署常用插件是:sprin ...
- C#:多进程开发,控制进程数量
正在c#程序优化时,如果多线程效果不佳的情况下,也会使用多进程的方案,如下: System.Threading.Tasks.Task task=System.Threading.Tasks.Task. ...
- c#:实现动态编译,并实现动态MultiProcess功能(来自python multiprocess的想法)
由于之前一直遇到一些关于并行进行数据处理的时效果往往不好,不管是c#还是java程序都是一样,但是在Python中通过multiprocess实现同样的功能时,却发现确实可以提高程序运行的性能,及服务 ...