Torontocity 
HCI 
middlebury 
caltech 行人检测数据集 
ISPRS航拍数据集 
mot challenge跟踪数据集

数据集名称

KITTI

论文链接 http://www.webmail.cvlibs.net/publications/Geiger2012CVPR.pdf

Oxford RobotCar

论文链接 http://robotcar-dataset.robots.ox.ac.uk/images/robotcar_ijrr.pdf 
Over the period of May 2014 to December 2015 we traversed a route through central Oxford twice a week on average using the Oxford RobotCar platform, an autonomous Nissan LEAF. This resulted in over 1000km of recorded driving with almost 20 million images collected from 6 cameras mounted to the vehicle, along with LIDAR, GPS and INS ground truth. 
数据集采集时走过的路线: 

Data was collected in all weather conditions, including heavy rain, night, direct sunlight and snow. Road and building works over the period of a year significantly changed sections of the route from the beginning to the end of data collection.

By frequently traversing the same route over the period of a year we enable research investigating long-term localisation and mapping for autonomous vehicles in real-world, dynamic urban environments. 
在不同天气、光线情况和交通状况下的数据集中的示例图: 

Cityscape

论文链接 https://arxiv.org/pdf/1604.01685.pdf 

Comma.ai

论文链接 https://arxiv.org/pdf/1608.01230.pdf 
论文中对于数据集的描述如下 

Udacity

Udacity为其自动驾驶算法比赛专门准备的数据集 
The dataset includes driving in Mountain View California and neighboring cities during daylight conditions. It contains over 65,000 labels across 9,423 frames collected from a Point Grey research cameras running at full resolution of 1920x1200 at 2hz. The dataset was annotated by CrowdAI using a combination of machine learning and humans. 
Labels 
Car 
Truck 
Pedestrian 
 
This dataset is similar to dataset 1 but contains additional fields for occlusion and an additional label for traffic lights. The dataset was annotated entirely by humans using Autti and is slightly larger with 15,000 frames.

Labels 
Car 
Truck 
Pedestrian 
Street Lights 

BDDV

论文链接 http://10.254.1.82/cache/8/03/openaccess.thecvf.com/1042c57ea5ddadd8cb802b7cb2e84b8e/Xu_End-To-End_Learning_of_CVPR_2017_paper.pdf

Berkeley的deepdrive研究组的用于自动驾驶的大规模数据集。包括视频数据集,图像分割数据集,目标检测和可行驶区域的数据集。 
视频数据集: 
Explore over 400 hours of HD video sequences across many different times in the day, weather conditions, and driving scenarios. Our video sequences also include GPS locations, IMU data, and timestamps. 
分割数据集: 
Explore over 5000 diverse images with pixel-level and rich instance-level annotations.

GTA5

中文名侠盗猎车手?一款赛车游戏,现在也被用来训练自动驾驶的模型。 
GTA5中几乎涵盖了各种各样的道路状况,包括山区、郊区和城市。还有各种各样的车辆,比如警车、救护车、出租车、货车等车型。 
据说Uber的研究人员在训练他们的自动驾驶模型用来玩GTA5这款游戏。

TORCS

This is the official site of TORCS, The Open Racing Car Simulator. TORCS is a highly portable multi platform car racing simulation. It is used as ordinary car racing game, as AI racing game and as research platform. It runs on Linux (all architectures, 32 and 64 bit, little and big endian), FreeBSD, OpenSolaris, MacOSX and Windows (32 and 64 bit). The source code of TORCS is licensed under the GPL (“Open Source”). You find more information about the project in the menu bar on the left. If you need help have a look at the FAQ first, I added a new Researchers section. You can contact us on the torcs-users mailing list (you need to subscribe to use it because of spam).

TORCS features many different cars, tracks, and opponents to race against. You can steer with a joystick or steering wheel, if the device is supported by your platform. It is also possible to drive with the mouse or the keyboard. Graphic features lighting, smoke, skid marks and glowing brake disks. The simulation features a simple damage model, collisions, tire and wheel properties (springs, dampers, stiffness, …), aerodynamics (ground effect, spoilers, …) and much more. The game play allows different types of races from the simple practice session up to the championship. Enjoy racing against your friends in the split screen mode with up to four human players.

TORCS was initially created by Eric Espié and Christophe Guionneau, substantial parts have been added by other contributors (have a look into the “Credits” section for details). The project is currently headed by Bernhard Wymann.The TORCS source code is licensed under the terms of the GNU General Public License (GPL 2), most of the artwork is licensed under the Free Art License, have a look into the packages for details about copyright holders and the licensing.

The next big development goal is an online racing mode. 

CARLA

论文链接 https://arxiv.org/pdf/1711.03938.pdf 
英特尔&丰田联合开源城市驾驶模拟器CARLA 
CARLA is an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. 

Carcraft

谷歌母公司Alphabet的自动驾驶子公司Waymo开发的一款软件,用来在诸如加州山景城和得克萨斯州奥斯汀等虚拟重建城市中测试无人驾驶汽车软件。该公司每天要开1287万公里的虚拟里程,专注于特别棘手的道路状况。 
在虚拟的奥斯汀、山景城、凤凰城,以及那些模拟的测试场景里,有25000辆虚拟的无人车穿梭其中。它们每天总共要行驶800万英里(约1287万公里),去年一整年,Waymo的虚拟无人车行驶了25亿英里,而实体测试车全年累积的里程,只有300万英里。 

另外,Waymo还在美国加州中央山谷地区的小城默塞德附近建了一个叫做castle的无人驾驶基地,综合了多种路况,利用多种道具建立了一个小型“城市”。

深度学习与自动驾驶领域的数据集(KITTI,Oxford,Cityscape,Comma.ai,BDDV,TORCS,Udacity,GTA,CARLA,Carcraft)的更多相关文章

  1. 深度学习(一)之MNIST数据集分类

    任务目标 对MNIST手写数字数据集进行训练和评估,最终使得模型能够在测试集上达到\(98\%\)的正确率.(最终本文达到了\(99.36\%\)) 使用的库的版本: python:3.8.12 py ...

  2. 机器学习、深度学习以及人工智能正在快速演进(ML、DL、AI)

    机器学习.深度学习以及人工智能正在快速演进 机器学习.深度学习和人工智能(ML.DL和AI)是彼此相关的概念,他们正在改变不知多少行业,改变其自身管理模式,同时改变做出决策的方式.显然,ML.DL和A ...

  3. 模型汇总24 - 深度学习中Attention Mechanism详细介绍:原理、分类及应用

    模型汇总24 - 深度学习中Attention Mechanism详细介绍:原理.分类及应用 lqfarmer 深度学习研究员.欢迎扫描头像二维码,获取更多精彩内容. 946 人赞同了该文章 Atte ...

  4. julia应用于自动驾驶汽车、机器人、3D 打印、精准医疗、增强现实、基因组学、能源交易、机器学习、金融风控和太空任务设计等多个领域

    编程界的新宠 Julia 发布 1.0 正式版本,多种优势集于一身2018-08-14 14:14 公司Julia 的累积下载次数超过 200 万,已被应用于自动驾驶汽车.机器人.3D 打印.精准医疗 ...

  5. 【AI in 美团】深度学习在文本领域的应用

    背景 近几年以深度学习技术为核心的人工智能得到广泛的关注,无论是学术界还是工业界,它们都把深度学习作为研究应用的焦点.而深度学习技术突飞猛进的发展离不开海量数据的积累.计算能力的提升和算法模型的改进. ...

  6. 深度学习数据集MNIST ImageNet COCO PASCAL VOC介绍

    参考文档 深度学习数据集汇总介绍 1.  MNIST 深度学习领域的“Hello World!”,入门必备!MNIST是一个手写数字数据库,它有60000个训练样本集和10000个测试样本集,每个样本 ...

  7. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  8. [AI开发]将深度学习技术应用到实际项目

    本文介绍如何将基于深度学习的目标检测算法应用到具体的项目开发中,体现深度学习技术在实际生产中的价值,算是AI算法的一个落地实现.本文算法部分可以参见前面几篇博客: [AI开发]Python+Tenso ...

  9. 【论文笔记】如何理解深度学习中的End to End

    End to end:指的是输入原始数据,输出的是最后结果,应用在特征学习融入算法,无需单独处理. end-to-end(端对端)的方法,一端输入我的原始数据,一端输出我想得到的结果.只关心输入和输出 ...

随机推荐

  1. Angular集成admin-lte框架

    其实上一篇里面提到的集成datatables.net就是admin-lte里面的一个子插件,不过这个子插件,他是自带types定义文件的,admin-lte这个东西在DefinitelyTyped里面 ...

  2. Pod install 之后 no such module

    官方文档在pod install之后的操作是: open App.xcworkspace 使用pod以后,项目的旧打开方式就不行了,必须到项目目录里面,打开“项目名.xcworkspace”这种方式来 ...

  3. Selenium调用webdriver.chrome()出错

    问题描述: 今天因为在学习要使用selenium这个python库,我下载好了selenium,并且也Import成功了,但是在我使用webdirver.chorme()时,却提示PATH路径中没有c ...

  4. Xamarin.Android 使用AsyncTask提示上传动态

    我们有时候会通过WebServices上传数据,如果信息量过大并没有提示,用户会觉得是死机,或是系统崩溃,这时候我们可以用到AsyncTask(异步任务)来提示上传信息,例如:正在上传数据... 这里 ...

  5. nginx与Apache的对比以及优缺点

    本文来自其他文章.如有好的问题,希望各位大神多多分享, 谢谢了..... 今天准备较详细的对比一下apache httpd与nginx两个web服务器的异同点.优缺点.由于我并不是做web开发的,所以 ...

  6. 队列Queue和栈

    1.队列Queue是常用的数据结构,可以将队列看成特殊的线性表,队列限制了对线性表的访问方式,只能从线性表的一段添加(offer)元素, 从另一段取出(poll)元素,队列遵循先进先出的原则. 2.J ...

  7. PAT1003:Emergency

    1003. Emergency (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue As an emerg ...

  8. 微信公众号 模板消息 定时推送 java

    前提:业务需要,要做一个关于月报的微信消息推送.即每个月定时自动发送一条消息 给关注 公众号的人 用的是 公众号的测试账号(实际开发需要认证的公众号) 微信官网的 模板消息接口规则: 1.所有服务号都 ...

  9. jquery-bootgrid

    http://www.jquery-bootgrid.com/GettingStarted 日志是生产环境非常重要的配置,在迁移老的工程到spring-boot时日志的设置兼容很重要,以下是自己在配置 ...

  10. PHP 7.3 我们将迎来灵活的 heredoc 和 nowdoc 句法结构

    php.net RFC 频道已经公布了 PHP 7.3 的 Heredoc 和 Nowdoc 语法更新,此次更新专注于代码可读性: Heredoc 和 Nowdoc 有非常严格的语法,有些时候这令很多 ...