论文泛读·Adversarial Learning for Neural Dialogue Generation
导读
这篇文章的主要工作在于应用了对抗训练(adversarial training)的思路来解决开放式对话生成(open-domain dialogue generation)这样一个无监督的问题。
其主体思想就是将整体任务划分到两个子系统上,一个是生成器(generative model),利用seq2seq式的模型以上文的句子作为输入,输出对应的对话语句;另一个则是一个判别器(discriminator),用以区分在前文条件下当前的问答是否是和人类行为接近,这里可以近似地看作是一个二分类分类器。两者结合的工作机理也很直观,生成器不断根据前文生成答句,判别器则不断用生成器的生成作为负例,原文的标准回答作为正例来强化分类。在两者训练的过程中,生成器需要不断改良答案来欺骗生成器,判别器则需要不断提高自身的判别能力从而区分机造和人造答案直至最后两者收敛达到某种均衡。
以往的模型受限于训练目标以及训练方式,其生成的结果往往是迟钝笼统的甚至都很简短(如果可以的话,所有的对话我都可以回答“呵呵”,很明显这样的回答是不符合常识的)。所以这样一种博弈式的训练方式来取代以往相对简单固定的概率似然来优化这样一种无监督的开放任务显然是很有意义的想法。不过这样的方法遇到困难也很明显,GAN和NLP一直八字不合,很难很好的融合。和之前的工作SeqGAN类似,这篇工作也采取了增强学习来规避GAN在NLP中使用的难点,并作出了更多的尝试。
补充知识:
- 生成器G就是一个seq2seq模型,输入是历史对话x,通过RNN来对语义进行向量表示再逐一生成回答的每个词,从而形成回答y
- 判别器D是一个输入为历史对话x和回答y二元组的一个二分类器,使用了hierarchicalencoder,其中机造回答组合为负例Q−({x,y}),人造回答组合为正例Q+({x, y})。
主要解决了什么问题:
以 GAN 为目标,生成自然语言
在本任务中增强学习的一个很大的问题在于我们的估价都是针对一整个回答的,判别器只会给出一个近似于对或者不对的反馈。这样的模式存在一个很大的问题是,即使是很多被判断为有问题的句子,其中有很大一部分语言成分是有效的,如文中的例子“what’s yourname”,人类回答“I am John”,机器回答“I don’t know”。判别器会给出“I don’t know”是有问题的,但无法给出I是对的而后面的don’t know是错的,事实上机器没有回答he/she/you/they而是I本质上是需要一个肯定的正反馈的。
判别器只告诉机器对或错,却不告知哪部分对和哪部分错,这对训练带来了很大隐患。
采用了什么方法:
把序列评分拆开来算,这样就能算到前缀的评分,做到局部评价的反馈。为了防止训练过拟合,每次只是从正例和负例的子序列中随机选取一个来训练。Reward for EveryGeneration Step
Teacher Forcing模型 :
在以往的工作中,D效果非常好而G的效果非常糟糕会带来训练效果的下降。试想一下一个G所有产生的答案都被D驳回了,在这段时间内G的所有反馈都是负反馈,G就会迷失从而不知道向什么方向优化会得到正反馈,所以理想的情况下G和D是交替训练上升的。
在控制D和G训练节奏的同时,这篇工作中又采用了一种类似强制学习的方式来尝试解决这个问题。每次在正常的增加学习后会让生成器强行生成正确答案并从D得到正向的反馈,从而每次都能有一个正向优化方向的指示。这样的行为类似于学校老师强行灌输知识,也很类似于之前的professor-forcing算法。
Policy Gradient Training模型:
文中模型采用了policy gradient的方法(增强学习的方式之一)来进行增强学习的训练。
优化目标是:

优化目标导数:

Q是判别器D的结果,换句话说判别器的鉴定结果可以看作是增强学习中的reward,policy gradient整体的优化目标其实就是希望回报高的决策其概率越高。在本任务中state为x,即历史对话;决策为y,即下一步的对话。x生成y的概率等于逐词生成的概率
Reward for EveryGeneration Step模型
该问题可以被概括为如下几部分:
给定一个对话输入序列x,该模型需要生成一个回应y。我们将sentence生成的过程视为一个动作序列(sequence of action),将encoder-decoder模型视为一个策略(policy)。

论文泛读·Adversarial Learning for Neural Dialogue Generation的更多相关文章
- [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks
[论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问 ...
- 论文泛读:Click Fraud Detection: Adversarial Pattern Recognition over 5 Years at Microsoft
这篇论文非常适合工业界的人(比如我)去读,有很多的借鉴意义. 强烈建议自己去读. title:五年微软经验的点击欺诈检测 摘要:1.微软很厉害.2.本文描述了大规模数据挖掘所面临的独特挑战.解决这一问 ...
- 论文泛读 A Novel Ensemble Learning-based Approach for Click Fraud Detection in Mobile Advertising [1/10]
title:新的基于集成学习的移动广告作弊检测 导语:基于buzzcity数据集,我们提出了对点击欺诈检测是基于一组来自现有属性的新功能的一种新方法.根据所得到的精度.召回率和AUC对所提出的模型进行 ...
- NLP论文泛读之《教材在线评论的情感倾向性分析》
NLP论文泛读之<教材在线评论的情感倾向性分析> 本文借助细粒度情感分类技术, 对从网络上抓取大量计算机专业本科教材的评价文本进行情感极性 分析, 从而辅助商家和出版社改进教材的质量.制定 ...
- Deep Reinforcement Learning for Dialogue Generation 论文阅读
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但 ...
- [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding
[论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 ...
- [论文][半监督语义分割]Adversarial Learning for Semi-Supervised Semantic Segmentation
Adversarial Learning for Semi-Supervised Semantic Segmentation 论文原文 摘要 创新点:我们提出了一种使用对抗网络进行半监督语义分割的方法 ...
- 【论文笔记】Learning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for Graphs 2018-01-17 21:41:57 [Introduction] 这篇 paper 是发表在 ...
- 【论文阅读】MEAL: Multi-Model Ensemble via Adversarial Learning
转载请注明出处:https://www.cnblogs.com/White-xzx/ 原文地址:https://arxiv.org/abs/1812.02425 Github: https://git ...
随机推荐
- 读取pdf内容分页和全部
//读取pdf 全部内容public static String topdffile(String pdffile){ StringBuffer result = new StringBuffer() ...
- nodejs批量导入数据eventproxy(回调函数嵌套解决方案)使用实例
回调函数嵌套解决方案——eventProxy API地址:https://github.com/JacksonTian/eventproxy 1.安装eventproxy 执行npm install ...
- Java Arrays 源码 笔记
Arrays.java是Java中用来操作数组的类.使用这个工具类可以减少平常很多的工作量.了解其实现,可以避免一些错误的用法. 它提供的操作包括: 排序 sort 查找 binarySearch() ...
- java排序算法(一):概述
java排序算法(一)概述 排序是程序开发中一种非常常见的操作,对一组任意的数据元素(活记录)经过排序操作后,就可以把它们变成一组按关键字排序的一组有序序列 对一个排序的算法来说,一般从下面三个方面来 ...
- 使用Java理解逻辑程序
1.Java常见的注释有哪些,语法是怎样的? 1)单行注释用//表示,编译器看到//会忽略该行//后的所文本 2)多行注释/* */表示,编译器看到/*时会搜索接下来的*/,忽略掉/* */之间的文本 ...
- xpath获取下一页,兄弟结点的妙用
第一页的情况: 第四页的情况 : 文章的链接: http://tech.huanqiu.com/science/2018-02/11605853_4.html 从上面我们可以看到,如果仅仅用xpat ...
- Hibernate学习笔记四 查询
HQL语法 1.基本语法 String hql = " from com.yyb.domain.Customer ";//完整写法 String hql2 = " fro ...
- JavaScript(第二十三天)【事件入门】
JavaScript事件是由访问Web页面的用户引起的一系列操作,例如:用户点击.当用户执行某些操作的时候,再去执行一系列代码. 一.事件介绍 事件一般是用于浏览器和用户操作进行交互.最早是IE和 ...
- 使用git将文件上传到Coding
1,首先在Coding上新建项目. 2,填写项目的相关内容. 3,建立项目后复制下面鼠标所选内容. 4,在自己的电脑中建立文件夹. 5,进入该文件夹后,点击鼠标右键,然后再点Git Clone. 6 ...
- [福州大学]W班平时成绩排名
评分链接 个人作业 第一次作业 http://www.cnblogs.com/1qazse4/p/7506448.html 第二次作业 http://www.cnblogs.com/1qazse4/p ...