Factorials 阶乘

    题目大意:给你一个数n,求出n ! 的最后一个非零位。

    注释:n<=4200

      想法:开始的想法是觉得这道题应该比较的有趣,因为我们知道,一个数的阶乘的最后的非零位后面或者是0,或者n<=4,所以,我们思考,如何才能有效的登出这个非零位。首先,我们发现,这个非零位后面零的个数是和n!中5的个数有关的,所以,我们思考:如果我们使得这个阶乘没有5会怎么样。想着想着,我相信你的头脑里会自然地蹦出一个定理——唯一分解定理。为什么?因为只有在这个定理的辅助下你才可以将5全部提取出来。我们又想到:由于唯一分解定理的存在,每个数都是有一个或几个定下来的素数组成,我们只需要这句话的一个性质:素数。一个数由素数组成,显然,这个素数是不大于本数的,n的数据范围是4200,是完全在我们的接受范围之内,想到这,这道题的大体轮廓就分为这样几个步骤:

      1.筛出n之前的所有素数,由于n的数据范围过小,我们可以O ( n ) 的方法去筛。

      2.对于每一个素数,我想求出n!中这个元素最多可以被整除多少次,也就是说我们到底有多少数包含多少这个素数。在此,介绍一个定理$f(n,k)=\sum\limits_{i=1}^{\infty} \lfloor \frac{n}{k^i}\rfloor$其中,f(n,k),表示n!中k的个数。

      3.这么筛,显然不对,4200里面2的个数就够我们受的了,我们想得到一种优化,我们发现,我们其实只需要得到这个素数的最后一位即可。

      4.但,还是有些困难,我们又发现了,对于每一个素数来讲(假设这个素数是a)$a^{4*k+i}=a^i$,我们只需处理%4意义下的即可。但是,a==2是需要特判。

      呼~长出一口气,这题就切了。

    最后,附上丑陋的代码......

 #include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int x[];
int ans[];
int num(int a,int b)//计算素数在n!中的个数,这个函数表示b在a!中的个数
{
int ans=;
while(a)
{
ans+=a/b;
a/=b;
}
return ans;
}
int power(int a,int b)//快速幂,其实可以直接乘,因为我们只考虑模4意义下
{
a%=;
int ans=;
while(b)
{
if(b&) ans=(ans*a)%;
b>>=;
a=(a*a)%;
}
return ans;
}
bool prime(int a)//判断是否为素数
{
int k=(int)(sqrt(a));
bool flag=true;
for(int i=;i<=k;i++)
{
if(a%i==)
{
flag=false;
break;
}
}
return flag;
}
int main()
{
int n;
int cnt=;
scanf("%d",&n);
for(int i=;i<=n;i++)//筛素数
{
if(prime(i)) x[++cnt]=i;
}
for(int i=;i<=cnt;i++)//用ans[]存素数个数
{
ans[x[i]]+=num(n,x[i]);
}
ans[]-=ans[];//我们再次用等数量的2将5替换掉,以便将最后的零去掉。
ans[]=;
int ansans=;
for(int i=;i<=cnt;i++)//对于每一个素数来讲,我们进行计算
{
ans[x[i]]%=;
if(ans[x[i]]==&&x[i]==)//特判2,因为别的素数的4次方的最后一位都是1(5已经除去),但2不是
{
ansans*=;
ansans%=;
}
ansans*=power(x[i],ans[x[i]]);
ansans%=;//我们只要最后一位
}
printf("%d\n",ansans);
return ;
}

    小结:错误:

      2A,第一次忘记特判2。

Factorials的更多相关文章

  1. HackerRank Extra long factorials

    传送门 今天在HackerRank上翻到一道高精度题,于是乎就写了个高精度的模板,说是模板其实就只有乘法而已. Extra long factorials Authored by vatsalchan ...

  2. 每日一九度之 题目1038:Sum of Factorials

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2109 解决:901 题目描述: John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1957, ...

  3. POJ 1775 (ZOJ 2358) Sum of Factorials

    Description John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1957, was a Hungarian-American mathematic ...

  4. (Problem 34)Digit factorials

    145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are ...

  5. USACO 3.2 Factorials

    Factorials The factorial of an integer N, written N!, is the product of all the integers from 1 thro ...

  6. 【CodeChef】Small factorials(BigInteger笔记)

    You are asked to calculate factorials of some small positive integers. Input An integer t, 1<=t&l ...

  7. 九度OJ 1038:Sum of Factorials(阶乘的和) (DP、递归)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1845 解决:780 题目描述: John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1957, ...

  8. SPOJ:Easy Factorials(占位)

    Finding factorials are easy but they become large quickly that is why Lucky hate factorials. Today h ...

  9. LightOJ - 1189 - Sum of Factorials

    先上题目 Sum of Factorials Time Limit:500MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

随机推荐

  1. JSP标签c:forEach报错(二)

    1.今天,我在用c标签写一些样例,结果出现一些错误,写下作为记录 具体错误如下: 三月 31, 2014 9:46:28 下午 org.apache.catalina.core.StandardWra ...

  2. Caused by: java.lang.ClassNotFoundException: Could not load requested class : org.h2.Driver

    1.错误描述 WARN:2015-05-01 13:26:10[localhost-startStop-1] - HHH000402: Using Hibernate built-in connect ...

  3. Jqurey 得到url参数 getUrlParam

    Jqurey 得到url参数 getUrlParam <script type="text/javascript"> (function ($) { //扩展方法获取u ...

  4. Jquery常用操作:checkbox、select取值,radio、checkbox、select选中及其相关

    常用Jquery操作:checkbox取值.select取值.radio选中.checkbox选中.select选中及其相关: 1.影藏页面元素 使用jquery真的很方便,比如要控制div的显示与隐 ...

  5. 常用javascript表单验证方法

    //座机电话验证(支持分机) function chekeTel(tel) { var Tel = /^\d{3,4}-\d{7,8}(-\d{3,4})?$/; if (Tel.test(tel)) ...

  6. CF198 div1 D - Iahub and Xors

    简单说就是左边x,y按照奇偶分为四种对于答案的影响都是不相关的 #include<bits/stdc++.h> using namespace std; typedef long long ...

  7. 【BZOJ2434】阿狸的打字机(AC自动机,树状数组)

    [BZOJ2434]阿狸的打字机(AC自动机,树状数组) 先写个暴力: 每次打印出字符串后,就插入到\(Trie\)树中 搞完后直接搭\(AC\)自动机 看一看匹配是怎么样的: 每次沿着\(AC\)自 ...

  8. 【BZOJ4012】开店(主席树)

    [BZOJ4012]开店(主席树) 题面 Description 风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到 人生哲学.最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点钱 ...

  9. python 想搞加密算法吗?快戳这里

    加密算法介绍 一,HASH Hash,一般翻译做"散列",也有直接音译为"哈希"的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换 ...

  10. java接口----继承(实现)方法

    文中"实现"一词特指接口的继承. 一个类实现多个接口时,不能出现同名的默认方法. 一个类既要实现接口又要继承抽象类,先继承后实现. 一个抽象类可以继承多个接口(implements ...