题目描述

有一个 \(n\) 行无穷列的海域,每个格子有 \(q\) 的概率安全, \(1-q\) 的概率不安全。从中框出一个面积最大的矩形,满足以下两个条件:

(1)矩形内的格子均安全;

(2)矩形必须紧靠海域的最左端(即包含第一列的格子)。

问最大面积为 \(k\) 的概率是多少。这里在模998244353意义下计算,给出 \(q\) 的分数表示形式 \(q=x/y\) 。

数据规模: \(1 \le n \le 10^9, 1 \le k \le 5 \times 10^4\) 。

简要题解

该问题等价于不超过 \(k\) 的概率减去不超过 \(k-1\) 的概率。

设 \(dp[i][j]\) 表示海域有 \(i\) 行,且第1列到第 \(j\) 列全安全的条件下,选取的最大面积不超过 \(k\) 的概率。我们要求的即为 \(dp[n][0]\) 。

初始条件和边界条件如下: \(dp[i][j]=0,i \times j>k,dp[0][j]=1\)

考虑 \(dp[i][j]\) 从谁转移。有两种情况:

情况一:第 \(j+1\) 列全安全;

情况二:第 \(j+1\) 列存在不安全的格子,则可以枚举第 \(j+1\) 列最靠上的不安全位置 \(t\) ,那么当且仅当上面 \(t-1\) 行面积不超过 \(k\) (概率 \(dp[t - 1][j + 1]{q^{t - 1}}\) ),且下面 \(i-t\) 行面积不超过 \(k\) (概率 \(dp[i-t][j]\) )时,整个地图选取的最大面积才不超过 \(k\) 。因而转移方程:

\[dp[i][j] = dp[i][j + 1]{q^i} + \sum\limits_{t = 1}^i {dp[t - 1][j + 1]{q^{t - 1}}(1 - q)dp[i - t][j]} \]

对于dp的复杂度,当 \(j=0\) 时暂时只求出 \(i \le k\) 的项, \(j>0\) 时只需求 \(ij \le k\) 的项,写成求和式为

\[\Theta ({k^2}) + \sum\limits_{j = 1}^k {\sum\limits_{i = 0}^{k/j} i } = \Theta({k^2})\]

考虑进一步优化。注意到转移是一个和自身相关的卷积,因而考虑生成函数。

设 \(F_j(x)\) 是 \(dp[i][j]\) 的生成函数, \(G_j(x)\) 是 \(dp[i][j]{q^i}\) 的生成函数,则\[{F_j}(x) = {G_{j + 1}}(x) + (1 - q)x{G_{j + 1}}(x){F_j}(x)\]得\[{F_j}(x) = \frac{{{G_{j + 1}}(x)}}{{1 - (1 - q)x{G_{j + 1}}(x)}}\]

按 \(j\) 递减顺序交替求 \({F_j}(x),{G_j}(x)\) ,时间复杂度为

\[\sum\limits_{j = 1}^k {\left\lfloor {\frac{k}{j}} \right\rfloor \log \left\lfloor {\frac{k}{j}} \right\rfloor } \approx k\sum\limits_{j = 1}^k {\frac{{\log k - \log j}}{j}} \approx k\log k\ln k - \frac{1}{2}k\log k\ln k = \Theta (k{\log ^2}k)\]

接下来考虑 \(dp[i][0](i>k)\) 。原始状态转移方程可化简为 \[dp[i][0] = \sum\limits_{t = 1}^{k + 1} {dp[t - 1][1]{q^{t - 1}}(1 - q)dp[i - t][0]}\] 不难发现是常系数齐次线性递推。因而可在 \(k \log k \log n\) 时间复杂度解决。

总时间复杂度 \(k \log k(\log k+\log n)\) 。

核心代码

已略去冗长的多项式模板以及线性递推模板。

 int q, qi[];
int solve(int n, int k)
{
Poly f(, ), g(, ), a;
for (int j = k; j >= ; j--){
int d = j ? k / j : k;
if (j == )a = g * (q - );
f.resize(d + ); g.resize(d + );
for (int i = ; i <= d; i++)
f[i] = mul(g[i - ], q - );
f = g * inv(f);
for (int i = ; i <= d; i++)
g[i] = mul(f[i], qi[i]);
}
reverse(a.begin(), a.end());
a.push_back();
return linear_recursion(a, f, n);
}
int main()
{
int n, k, x, y;
scanf("%d%d%d%d", &n, &k, &x, &y);
q = mul(x, power(y, MOD - ));
qi[] = ;
for (int i = ; i <= k; i++)
qi[i] = mul(qi[i - ], q);
printf("%d", sub(solve(n, k), solve(n, k - )));
}

总结

非常喜欢这类蕴含着思维难度,但是代码量极少的题目。真心佩服出题人系列~

参考博客

http://blog.csdn.net/ez_yww/article/details/78679459

BZOJ4944 泳池 解题报告的更多相关文章

  1. CH Round #56 - 国庆节欢乐赛解题报告

    最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...

  2. 二模13day1解题报告

    二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...

  3. BZOJ 1051 最受欢迎的牛 解题报告

    题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4438  Solved: 2353[S ...

  4. 习题:codevs 2822 爱在心中 解题报告

    这次的解题报告是有关tarjan算法的一道思维量比较大的题目(真的是原创文章,希望管理员不要再把文章移出首页). 这道题蒟蒻以前做过,但是今天由于要复习tarjan算法,于是就看到codevs分类强联 ...

  5. 习题:codevs 1035 火车停留解题报告

    本蒟蒻又来写解题报告了.这次的题目是codevs 1035 火车停留. 题目大意就是给m个火车的到达时间.停留时间和车载货物的价值,车站有n个车道,而火车停留一次车站就会从车载货物价值中获得1%的利润 ...

  6. 习题: codevs 2492 上帝造题的七分钟2 解题报告

    这道题是受到大犇MagHSK的启发我才得以想出来的,蒟蒻觉得自己的代码跟MagHSK大犇的代码完全比不上,所以这里蒟蒻就套用了MagHSK大犇的代码(大家可以关注下我的博客,友情链接就是大犇MagHS ...

  7. 习题:codevs 1519 过路费 解题报告

    今天拿了这道题目练练手,感觉自己代码能力又增强了不少: 我的思路跟别人可能不一样. 首先我们很容易就能看出,我们需要的边就是最小生成树算法kruskal算法求出来的边,其余的边都可以删掉,于是就有了这 ...

  8. NOIP2016提高组解题报告

    NOIP2016提高组解题报告 更正:NOIP day1 T2天天爱跑步 解题思路见代码. NOIP2016代码整合

  9. LeetCode 解题报告索引

    最近在准备找工作的算法题,刷刷LeetCode,以下是我的解题报告索引,每一题几乎都有详细的说明,供各位码农参考.根据我自己做的进度持续更新中......                        ...

随机推荐

  1. js常用 弹出确认 取消对话框

    <!DOCTYPE html><html><head> <title></title> <meta charset='utf-8'&g ...

  2. JavaScript 对象分类

    参考自W3School:JavaScript对象主要有三类. 一:JavaScript核心对象是ECMAScript标准定义好的一些对象与函数,在JavaScript语言中可以直接使用.主要常用有如下 ...

  3. for循环嵌套讲解:

    1.for循环嵌套讲解: class ForForDemo {     public static void main(String[] args)     {         //大圈套小圈思想: ...

  4. ScrollView的顶部下拉和底部上拉回弹效果

    要实现ScrollView的回弹效果,需要对其进行触摸事件处理.先来看一下简单的效果: 根据Android的View事件分发处理机制,下面对dispatchTouchEvent进行详细分析: 在加载布 ...

  5. tar结果find打包指定后缀的文件

    find 目录名 -name "*.ini" | xargs tar czvf tarch.tar.gz  tar czf tmp.tar.gz tmp/ --exclude=&q ...

  6. AngularJS - 使用RequireJS还是Browserify?

    http://www.html-js.com/article/2126 AngularJS - 使用RequireJS还是Browserify? AngularJS之所以吸引了很多开发者的关注,很大一 ...

  7. angular2 安装 打包成发布项目过程

    安装之前要有typings和typescript全局已经安装好 安装命令新版为npm install -g @angular/cli 原来的angular-cli为老版的,我安装失败了 安装之后新建一 ...

  8. java运行机制、Jdk版本及Java环境变量

    一.语言特性 计算机高级语言按程序的执行方式可分为:编译型和解释型两种.编译型的语言是指使用专门的编译器,针对特定的平台(操作系统)一次性翻译成被该平台硬件执行的机器码,并包装成该平台可执行性程序文件 ...

  9. Java枚举enum以及应用:枚举实现单例模式

    枚举作为一个常规的语言概念,一直到Java5才诞生不得不说有点奇怪,以至于到现在为止很多程序员仍然更喜欢用static final的形式去命名常量而不使用,一般情况下,Java程序员用这种方式去实现枚 ...

  10. Python学习 Part5:输入输出

    Python学习 Part5:输入输出 1. 格式化输出 三种输出值的方法: 表达式语句 print()函数 使用文件对象的write()方法 两种方式格式化输出: 由自己处理整个字符串,通过使用字符 ...