BZOJ 4025: 二分图 [线段树CDQ分治 并查集]
4025: 二分图
题意:加入边,删除边,查询当前图是否为二分图
本来想练lct,然后发现了线段树分治的做法,感觉好厉害。
lct做法的核心就是维护删除时间的最大生成树
首先口胡一个分块做法,和hnoi2016第一题类似的偏序关系,一样做。
线段树分治
数据结构题中如果使用对时间cdq分治,要求每个操作独立,不能很好的处理撤销(删除)操作。
采取线段树区间标记的思想
对于一个操作,它的存在时间是\([l,r]\)
我们模仿线段树打标记的过程进行分治,\(cdq(l,r,S)\)表示当前处理时间\([l,r]\),操作集合为\(S\)
如果区间就是当前区间,那么进行操作
否则继续递归
对于本题,用启发式合并 不路径压缩的并查集实现加边和撤销
越卡常越慢是smg
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long ll;
const int N=2e5+5;
inline int read(){
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
int n, m, T, u, v, l, r;
struct edge {
int u, v, l, r;
bool operator <(const edge &a) const {return l == a.l ? r < a.r : l < a.l;}
};
typedef vector<edge> meow;
meow a;
int top;
namespace ufs {
struct node {int fa, val, size;} t[N];
struct info {int x, y; node a, b;} st[N];
inline void init() {for(int i=1; i<=n; i++) t[i] = (node){i, 0, 1};}
inline int find(int x) {while(t[x].fa != x) x = t[x].fa; return x;}
inline int dis(int x) {
int ans=0;
while(t[x].fa != x) ans ^= t[x].val, x = t[x].fa;
return ans;
}
inline void link(int x, int y) {
int val = dis(x) ^ dis(y) ^ 1;
x = find(x); y = find(y);
st[++top] = (info) {x, y, t[x], t[y]};
if(t[x].size > t[y].size) swap(x, y);
t[x].fa = y; t[x].val = val; t[y].size += t[x].size;
}
inline void recov(int bot) {
while(top != bot) {
info &now = st[top--];
t[now.x] = now.a; t[now.y] = now.b;
}
}
} using namespace ufs;
void cdq(int l, int r, meow &a) {
int mid = (l+r)>>1, bot = top;
meow b, c;
for(int i=0; i<(int)a.size(); i++) {
edge &now = a[i];
int x = now.u, y = now.v;
if(now.l == l && now.r == r) {
int p = find(x), q = find(y);
if(p == q) {
int val = dis(x) ^ dis(y);
if(val == 0) {
for(int i=l; i<=r; i++) puts("No");
recov(bot); return;
}
} else link(x, y);
}
else if(now.r <= mid) b.push_back(now);
else if(mid < now.l) c.push_back(now);
else b.push_back( (edge){now.u, now.v, now.l, mid} ), c.push_back( (edge){now.u, now.v, mid+1, now.r} );
}
if(l == r) puts("Yes");
else cdq(l, mid, b), cdq(mid+1, r, c);
recov(bot);
}
int main() {
//freopen("in", "r", stdin);
n=read(); m=read(); T=read();
for(int i=1; i<=m; i++) {
u=read(), v=read(), l=read()+1, r=read();
if(l > r) continue;
a.push_back((edge){u, v, l, r});
}
init();
cdq(1, T, a);
}
BZOJ 4025: 二分图 [线段树CDQ分治 并查集]的更多相关文章
- [BZOJ 4025]二分图(线段树分治+带边权并查集)
[BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...
- bzoj 4025 二分图——线段树分治+LCT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4025 线段树分治,用 LCT 维护链的长度即可.不过很慢. 正常(更快)的方法应该是线段树分 ...
- 【openjudge】C15C Rabbit's Festival CDQ分治+并查集
题目链接:http://poj.openjudge.cn/practice/C15C/ 题意:n 点 m 边 k 天.每条边在某一天会消失(仅仅那一天消失).问每一天有多少对点可以相互到达. 解法:开 ...
- BZOJ 3939 [Usaco2015 Feb]Cow Hopscotch ——线段树 CDQ分治
显然dp[i][j]=ps[i-1][j-1]-sigma(dp[k<i][l<j],a[i][j]=a[k][l]) 考虑对于每一种颜色都开一颗区间线段树,但是空间不够. 所以我们可以动 ...
- COGS 577 蝗灾 线段树+CDQ分治
第一次写cdq分治 感谢hhd<y 这20亿对CP的指导(逃) 其实 就是 递归看左半部分对右半部分的贡献 (树状数组写挂了--临时改的线段树[大写的尴尬]) //By SiriusRen ...
- hdu_5354_Bipartite Graph(cdq分治+并查集判二分图)
题目链接:hdu_5354_Bipartite Graph 题意: 给你一个由无向边连接的图,问对于每一个点来说,如果删除这个点,剩下的点能不能构成一个二分图. 题解: 如果每次排除一个点然后去DFS ...
- BZOJ 2333 棘手的操作(离线+线段树+带权并查集)
这题搞了我一天啊...拍不出错原来是因为极限数据就RE了啊,竟然返回WA啊.我的线段树要开8倍才能过啊... 首先可以发现除了那个加边操作,其他的操作有点像线段树啊.如果我们把每次询问的联通块都放在一 ...
- BZOJ 2733 线段树的合并 并查集
思路: 1.线段树合并(nlogn的) 2.splay+启发式合并 线段树合并比较好写 我手懒 //By SiriusRen #include <cstdio> #include < ...
- BZOJ 2733 [HNOI2012]永无乡 (权值线段树启发式合并+并查集)
题意: n<=1e5的图里,在线连边.查询某连通块第k大 思路: 练习线段树合并的好题,因为依然记得上一次启发式合并trie的时候内存爆炸的恐怖,所以这次还是用了动态开点.回收 听说启发式合并s ...
随机推荐
- Apache Shiro 核心概念
转自:http://blog.csdn.net/peterwanghao/article/details/8015571 Shiro框架中有三个核心概念:Subject ,SecurityManage ...
- echarts自定义提示框数据
tooltip: { trigger: "axis", axisPointer: { // 坐标轴指示器,坐标轴触发有效 type: "line" // 默认为 ...
- JPQL
JPQL语言 JPQL语言,即 Java Persistence Query Language 的简称. JPQL是一种和 SQL 非常类似的中间性和对象化查询语言, 它最终会被编译成针对不同底层数据 ...
- [OpenCV学习笔记1][OpenCV基本数据类型]
CvPoint基于二维整形坐标轴的点typedef struct CvPoint{int x; /* X 坐标, 通常以 0 为基点 */int y; /* y 坐标,通常以 0 为基点 */}CvP ...
- TypeScript和Node模块解析策略
一般我们在模块化编码时,总会导入其它模块,通常我们使用如下语法: import { A } from './a'; // ES6语法 import { A } from 'a'; var A = re ...
- 什么是WEBserver? 经常使用的WEBserver有哪些?
地址:http://www.mamicode.com/ 什么是WEBserver? 经常使用的WEBserver有哪些? 一.什么是WEBserver Webserver能够解析HTTP协议.当Web ...
- 浅谈mysql innodb缓存策略
浅谈mysql innodb缓存策略: The InnoDB Buffer Pool Innodb 持有一个存储区域叫做buffer pool是为了在内存中缓存数据和索引,知道innodb buffe ...
- 在单体应用的一些DDD实践经验
阅读此文需要一定的DDD基础,如果你是第一次接触DDD读者,建议先去阅读一些DDD相关的书籍或者文章之后再来阅读本文. 背景 自从我在团队中推行DDD以来,我们团队经历了一系列的磨难--先是把核心项目 ...
- PUTTY无法远程连接服务器故障解决[转]
对于一个刚刚了解putty工具的新手来说,在putty工具使用中有时出现了问题而无法解决.今天就来介绍怎么解决putty无法远程连接服务器的故障. 用putty远程连接服务器时,提示错误 server ...
- python_冒泡算法
什么是冒泡算法? -- 像鱼吐泡泡一样,每次都是向上冒出一个水泡 如何逻辑整理? -- 先拿第一个值和剩下的值,一一比较,必能找到最大的或者最小的 -- 比较过程中,第一个值小于剩下的某个值,交换位置 ...