UOJ 241. 【UR #16】破坏发射台 [矩阵乘法]
UOJ 241. 【UR #16】破坏发射台
题意:长度为 n 的环,每个点染色,有 m 种颜色,要求相邻相对不能同色,求方案数。(定义两个点相对为去掉这两个点后环能被分成相同大小的两段)
只想到一个奇怪的线性递推,无法写成矩乘的形式...
正解用状态记录了颜色是否相同
奇环,只考虑相邻,确定第一个的颜色,\(f[i][0/1]\)表示i个与第一个不同/同色的方案数
偶环,再考虑相对,分成两段,同时递推\(i,\frac{n}{2}+i\),\(f[i][0..6]\)来表示
构造矩阵讨论好烦啊
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int mo = 998244353;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
}
int n, m, r, g[7][7], f[7][7];
void mul(int a[7][7], int b[7][7]) {
static int c[7][7];
memset(c, 0, sizeof(c));
for(int i=0; i<r; i++)
for(int k=0; k<r; k++) if(a[i][k])
for(int j=0; j<r; j++) if(b[k][j])
c[i][j] = (c[i][j] + (ll) a[i][k] * b[k][j]) %mo;
memcpy(a, c, sizeof(c));
}
void Pow(int a[7][7], int b) {
static int c[7][7];
memset(c, 0, sizeof(c));
for(int i=0; i<r; i++) c[i][i] = 1;
for(; b; b >>= 1, mul(a, a)) if(b & 1) mul(c, a);
memcpy(a, c, sizeof(c));
}
void print(int a[7][7]) {
for(int i=0; i<r; i++) for(int j=0; j<r; j++) printf("%d%c", a[i][j], j==r-1 ? '\n' : ' ');
puts("");
}
namespace odd {
void solve() {
r = 2;
g[0][0] = m-2; g[0][1] = m-1;
g[1][0] = 1; g[1][1] = 0;
Pow(g, n-2);
//print(g);
f[0][0] = m-1; f[1][0] = 0;
mul(g, f);
//print(g);
int ans = (ll) g[0][0] * m %mo;
printf("%d\n", ans);
}
}
namespace even {
int id[5][5];
inline ll cal(int a, int c) {
if(a == 0) return c==0 ? m-3 : m-2;
else return 1;
}
void solve() {
r = 7;
memset(id, -1, sizeof(id));
id[0][0] = 0; id[0][1] = 1; id[0][2] = 2;
id[1][0] = 3; id[1][2] = 4;
id[2][0] = 5; id[2][1] = 6;
for(int a=0; a<3; a++) for(int b=0; b<3; b++) if(~id[a][b])
for(int c=0; c<3; c++) for(int d=0; d<3; d++) if(~id[c][d]) {
int i = id[a][b], j = id[c][d];
if((a && a==c) || (b && b==d)) continue;
if(a == 0 && b == 0) { //printf("hi\n");
if(c && d) g[i][j] = (ll) (m-2) * max(0, m-3) %mo;
else if(!c && !d) g[i][j] = ((ll) max(0, m-4) * max(0, m-4) + max(0, m-3)) %mo;
else if(c || d) g[i][j] = ((ll) max(0, m-3) * max(0, m-3)) %mo;
g[i][j] = max(0, g[i][j]);
} else g[i][j] = cal(a, c) * cal(b, d) %mo;
}
//print(g);
f[id[0][0]][0] = max(0LL, (ll)(m-2) * (m-3)) %mo;
f[id[0][1]][0] = m-2;
f[id[2][0]][0] = m-2;
f[id[2][1]][0] = 1;
n = n/2 - 1;
Pow(g, n-1);
//print(g);
mul(g, f);
//print(g);
int ans = (ll) ((ll) g[0][0] + g[id[1][0]][0] + g[id[0][2]][0] + g[id[1][2]][0]) %mo * m %mo * (m-1) %mo;
printf("%d\n", ans);
}
}
int main() {
freopen("in", "r", stdin);
n = read(); m = read();
if(n == 1) printf("%d\n", m);
else if(n == 2) printf("%lld\n", (ll) m * (m-1) %mo);
if(n & 1) odd::solve();
else even::solve();
}
UOJ 241. 【UR #16】破坏发射台 [矩阵乘法]的更多相关文章
- [UOJ UR#16]破坏发射台
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 先考虑n是奇数的情况,很容易想到一个dp,f[i][0/1]表示转移到第i个数,第i个数是不是第一个数的方案数,然后用矩阵乘法优化一下 ...
- 【UOJ#242】【UR#16】破坏蛋糕(计算几何)
[UOJ#242][UR#16]破坏蛋糕(计算几何) 题面 UOJ 题解 为了方便,我们假定最后一条直线是从上往下穿过来的,比如说把它当成坐标系的\(y\)轴. 于是我们可以处理出所有交点,然后把它们 ...
- 矩阵乘法的MapReduce实现
对于任意矩阵M和N,若矩阵M的列数等于矩阵N的行数,则记M和N的乘积为P=M*N,其中mik 记做矩阵M的第i行和第k列,nkj记做矩阵N的第k行和第j列,则矩阵P中,第i行第j列的元素可表示为公式( ...
- 第四章 分治策略 4.2 矩阵乘法的Strassen算法
package chap04_Divide_And_Conquer; import static org.junit.Assert.*; import java.util.Arrays; import ...
- 【模拟题(电子科大MaxKU)】解题报告【树形问题】【矩阵乘法】【快速幂】【数论】
目录: 1:一道简单题[树形问题](Bzoj 1827 奶牛大集会) 2:一道更简单题[矩阵乘法][快速幂] 3:最简单题[技巧] 话说这些题目的名字也是够了.... 题目: 1.一道简单题 时间1s ...
- 基于OpenMP的矩阵乘法实现及效率提升分析
一. 矩阵乘法串行实现 例子选择两个1024*1024的矩阵相乘,根据矩阵乘法运算得到运算结果.其中,两个矩阵中的数为double类型,初值由随机数函数产生.代码如下: #include <i ...
- Codevs No.1287 矩阵乘法
2016-06-01 16:53:23 题目链接: 矩阵乘法 (Codevs No.1287) 题目大意: 给你两个可乘矩阵a,b,求a*b 解法: 定义....... //矩阵乘法 (Codevs ...
- 2.3CUDA矩阵乘法
CPU 矩阵乘法 能相乘的两个矩阵,必须满足一个矩阵的行数和第二个矩阵的列数相同. A(N*P) * B(P*M) = C(N*M). 其中P是行数,N是列数, 从宽高的角度来说,即 A的宽度和B的高 ...
- 【POJ2778】AC自动机+矩阵乘法
DNA Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14758 Accepted: 5716 Descrip ...
随机推荐
- D. Longest Subsequence
D. Longest Subsequence time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- 根据父节点parentid查询节点信息
---恢复内容开始--- SELECT * from tb3 where pid in(select id from tb1 where parentId ='ce2a98d7a04c4bf6a38 ...
- FtpUtil.java测试 (淘淘商城第三课文件上传)
首先在common-taotao中创建一个utils包,复制FtpUtil.java到其中.然后如下: @Test public void testFtpUtil() throws Exception ...
- 三分钟使用webpack-dev-sever搭建一个服务器
webpack-dev-server是一个小型的Node.js Express服务器,我们可以通过它搭建一个本地服务器,并且实现文件热更新; 1.切换到你的目录下对项目进行初始化 npm init 一 ...
- sha1() 函数
sha1() 函数计算字符串的 SHA-1 散列. sha1() 函数使用美国 Secure Hash 算法 1. 来自 RFC 3174 的解释 - 美国 Secure Hash 算法 1:SHA- ...
- thinkphp3.2.2邮箱发送
浏览:7510 最后更新:2017-03-18 14:21 分类:类库 关键字: PHPMailer 第一步:准备PHPMailer 将下载的PHPMailer放到ThinkPHP/library/V ...
- dede文章插入分页符不起作用,编辑器中出现分页符,导致文章显示不全
文章来源:小灰博客| 时间:2013-10-30 13:40:21| 作者:Leo | 1 条评论 文章分类:IT技术分享.PHP 标签: dedecms 今天偶尔发现给一篇dede下的长文章 ...
- 邓_PHP面试【001】
1.双引号和单引号的区别 双引号解释变量,单引号不解释变量 双引号里插入单引号,其中单引号里如果有变量的话,变量解释 双引号的变量名后面必须要有一个非数字.字母.下划线的特殊字符,或者用{}讲变量括起 ...
- 【WebApi系列】详解WebApi如何传递参数
WebApi系列文章 [01]浅谈HTTP在WebApi开发中的运用 [02]聊聊WebApi体系结构 [03]详解WebApi参数的传递 [04]详解WebApi测试和PostMan [05]浅谈W ...
- 小打卡PRD
目标:打造一款不同于市场上的公开打卡app的产品 理念:通过监督和鼓励,和相同圈子的人一起互相鼓励.分享及监督,共同进步. 优点: 模板消息通知,网上基本通过小程序中逻辑层JS完成推送的请求,小打卡在 ...