[SDOI 2009]Elaxia的路线
Description
Input
Output
Sample Input
1 6 7 8
1 2 1
2 5 2
2 3 3
3 4 2
3 9 5
4 5 3
4 6 4
4 7 2
5 8 1
7 9 1
Sample Output
HINT
对于30%的数据,N ≤ 100;
对于60%的数据,N ≤ 1000;
对于100%的数据,N ≤ 1500,输入数据保证没有重边和自环。
题解
一开始看点数小,直接强行$SPFA$预处理出第一条路径,然后再$SPFA$第二条路径时记录答案。$TLE$...
首先,分别从$x_1$,$y_1$,$x_2$,$y_2$为源点分别跑一次$SPFA$,记$dis[0][u]$,$dis[1][u]$,$dis[2][u]$,$dis[3][u]$分别为从$x_1$,$y_1$,$x_2$,$y_2$为起始点到点$u$的最短路径。
构建出一个新的有向图,包含$x_1->y_1$和$x_2->y_2$的所有最短路上的边。判断一条边$u->v$是否在$x_1->y_1$的最短路上,就是判断$dis[1][u]+val(u,v)+dis[2][v]==dis[1][y1]$($val(u,v)$为边$u->v$的长度),如果为真,那么在最短路上,为假则不在最短路上。是否在$x_2->y_2$的最短路上同理。
不过要注意一点,因为边的走向可能是$u->v$,也可能是$v->u$。所以,对于一条边必须判断两次(第一次为$u->v$,第二次为$v->u$)。
- 最后,按照新图的拓扑序,在各个点之间进行递推,求得答案。
//It is made by Awson on 2017.10.20
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define sqr(x) ((x)*(x))
#define y1 yy
using namespace std;
const int N = ; int n, m, x1, x2, y1, y2, u, v, c;
struct tt {
int to, cost, next;
bool color;
}edge[(N*N>>)+], g[(N*N>>)+];
int path[N+], top, path_g[N+], top_g;
int dist[][N+], ans, cnt[N+], in[N+];
struct node {
int x, val;
node (){
}
node (int _x, int _val) {
x = _x, val = _val;
}
}; void init(int u, int v, int c) {
g[++top_g].to = v;
g[top_g].cost = c;
g[top_g].next = path_g[u];
path_g[u] = top_g;
}
void add(int u, int v, int c) {
edge[++top].to = v;
edge[top].next = path[u];
edge[top].cost = c;
path[u] = top;
}
void topsort() {
queue<node>Q; while (!Q.empty()) Q.pop();
for (int i = ; i <= n; i++) if (!in[i]) Q.push(node(i, ));
while (!Q.empty()) {
int u = Q.front().x, val = Q.front().val; Q.pop();
ans = Max(ans, val);
for (int i = path_g[u]; i; i = g[i].next) {
int v = g[i].to; in[v]--; cnt[v] = Max(cnt[v], val+g[i].cost);
if (!in[v]) Q.push(node(v, cnt[v]));
}
}
}
void SPFA(int x, int t) {
bool vis[N+] = {}; vis[x] = ;
memset(dist[t], /, sizeof(dist[t])); dist[t][x] = ;
queue<int>Q; while (!Q.empty()) Q.pop(); Q.push(x);
while (!Q.empty()) {
int u = Q.front(); Q.pop(); vis[u] = ;
for (int i = path[u]; i; i = edge[i].next) {
int v = edge[i].to;
if (dist[t][v] > dist[t][u]+edge[i].cost) {
dist[t][v] = dist[t][u]+edge[i].cost;
if (!vis[v]) {
vis[v] = ; Q.push(v);
}
}
}
}
}
void work() {
scanf("%d%d%d%d%d%d", &n, &m, &x1, &y1, &x2, &y2);
for (int i = ; i <= m; i++) {
scanf("%d%d%d", &u, &v, &c);
add(u, v, c), add(v, u, c);
}
SPFA(x1, ); SPFA(y1, ); SPFA(x2, ), SPFA(y2, );
for (int u = ; u <= n; u++)
for (int i = path[u]; i; i = edge[i].next) {
int v = edge[i].to;
if (dist[][u]+dist[][v]+edge[i].cost != dist[][y1]) continue;
if (dist[][u]+dist[][v]+edge[i].cost != dist[][y2]) continue;
init(u, v, edge[i].cost); in[v]++;
}
topsort();
memset(path_g, , sizeof(path_g)); top_g = ;
memset(cnt, , sizeof(cnt));
for (int u = ; u <= n; u++)
for (int i = path[u]; i; i = edge[i].next) {
int v = edge[i].to;
if (dist[][u]+dist[][v]+edge[i].cost != dist[][y1]) continue;
if (dist[][u]+dist[][v]+edge[i].cost != dist[][y2]) continue;
init(u, v, edge[i].cost); in[v]++;
}
topsort();
printf("%d\n", ans);
}
int main() {
work();
return ;
}
[SDOI 2009]Elaxia的路线的更多相关文章
- 「SDOI 2009」Elaxia的路线
发现自己这几天智商完全不在线-- 这道题的数据十分的水,怎样都可以艹过去-- 开始想了一个完全错误的算法,枚举一对点,判断这一对点是否同时在两条最短路上,是就用两点之间的路径更新答案.显然这样是错的: ...
- BZOJ-1880 Elaxia的路线 SPFA+枚举
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MB Submit: 921 Solved: 354 [Submit][Sta ...
- BZOJ 1880: [Sdoi2009]Elaxia的路线( 最短路 + dp )
找出同时在他们最短路上的边(dijkstra + dfs), 组成新图, 新图DAG的最长路就是答案...因为两人走同一条路但是不同方向也可以, 所以要把一种一个的s,t换一下再更新一次答案 ---- ...
- 【BZOJ1880】[Sdoi2009]Elaxia的路线(最短路)
[BZOJ1880][Sdoi2009]Elaxia的路线(最短路) 题面 BZOJ 洛谷 题解 假装我们知道了任意两点间的最短路,那么我们怎么求解答案呢? 不难发现公共路径一定是一段连续的路径(如果 ...
- 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...
- [BZOJ 1879][SDOI 2009]Bill的挑战 题解(状压DP)
[BZOJ 1879][SDOI 2009]Bill的挑战 Description Solution 1.考虑状压的方式. 方案1:如果我们把每一个字符串压起来,用一个布尔数组表示与每一个字母的匹配关 ...
- P2149 Elaxia的路线
P2149 Elaxia的路线 题意简述: 在一个n(n<=1500)个点的无向图里找两对点之间的最短路径的最长重合部分,即在保证最短路的情况下两条路径的最长重合长度(最短路不为一) 思路: 两 ...
- 【BZOJ 1880】 [Sdoi2009]Elaxia的路线 (最短路树)
1880: [Sdoi2009]Elaxia的路线 Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. ...
- BZOJ1880: [Sdoi2009]Elaxia的路线(最短路)
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 2049 Solved: 805 题目链接:https ...
随机推荐
- 第二次作业-关于Steam游戏平台的简单分析
1.1 Steam平台的简单介绍 你选择的产品是? 如题,这次的作业我选择了Steam作为分析的对象. 为什么选择该产品作为分析? 我选择数字游戏贩售平台STEAM作为分析对象的原因有以下几点: 1. ...
- 关于如何学习C语言
2016级计算机专业的C语言分为两个学期,第一学期是C语言(基础),第二学期是C语言(高级),在第一学期主要学习的内容是基本的数据类型,分支结构和循环结构,一维和二维数组,字符数组,函数.通过这学期独 ...
- C语言第二周作业----分支结构
一.PTA实验作业 题目1.7-1计算分段函数 本题目要求计算下列分段函数f(x)的值: 注:可在头文件中包含math.h,并调用sqrt函数求平方根,调用pow函数求幂. 1.实验代码 int ma ...
- 【Alpha版本】冲刺阶段 - Day2 - 漂流
今日进展 袁逸灏:实现车辆的子弹发射(3.5h) 启动类,子弹类(修改类),游戏画面类(修改类) 刘伟康:继续借鉴其他 alpha 冲刺博客,初步了解墨刀.leangoo等工具(2h) 刘先润:解决了 ...
- TSP-旅行商问题
#include <iostream> #include <vector> #include <algorithm> using namespace std; in ...
- STM32F4系列单片机上使用CUBE配置MBEDTLS实现pem格式公钥导入
|版权声明:本文为博主原创文章,未经博主允许不得转载. 最近尝试在STM32F4下用MBEDTLS实现了公钥导入(我使用的是ECC加密),整个过程使用起来比较简单. 首先,STM32F4系列CUBE里 ...
- javascript递归函数
递归函数:是指函数直接或间接调用函数本身,则称该函数为递归函数. 这句话理解起来并不难,从概念上出发,给出以下的例子: function foo(){ console.log("函数 foo ...
- os.getcwd()、sys.path[0]、sys.argv[0]和__file__的区别,终于弄清楚了
os.getcwd().sys.path[0].sys.argv[0]和__file__的区别 要分清这几个的区别与使用条件,实际测试一下是最准确的. 设计测试方法: 一个主模块用来运行,一个子模块用 ...
- Python内置函数(62)——exec
英文文档: exec(object[, globals[, locals]]) This function supports dynamic execution of Python code. obj ...
- Nginx负载均衡(架构之路)
[前言] 在大型网站中,负载均衡是有想当必要的.尤其是在同一时间访问量比较大的大型网站,例如网上商城,新闻等CMS系统,为了减轻单个服务器的处理压力,我们引进了负载均衡这一个概念,将一个服务器的压力分 ...