Leetcode 动态规划 Unique Paths
本文为senlie原创。转载请保留此地址:http://blog.csdn.net/zhengsenlie
Unique Paths
Total Accepted: 17915 Total
Submissions: 57061My Submissions
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
题意:给定一个 m * n 的网格,一个机器人要从左上角走到右下角,每次仅仅能向下或向右移动一个位置。
问有多少种走法
思路1:dfs暴力枚举
复杂度:超时了... O(2^n)
思路2:记忆化搜索
用一个数组paths[i][j]记录从 (0,0) 到 (m,n)的路径数
思路3:dp
设置状态为f[i][j],表示从(0,0)到达网格(i,j)的路径数,则状态转移方程为
f[i][j] = f[i - 1][j] + f[i][j - 1]
复杂度:时间O(n^2) 空间 O(n)
<pre name="code" class="cpp">//思路1
int uniquePaths(int m, int n){
if(m < 0 || n < 0) return 0;
if(m == 1 && n == 1) return 1;
return uniquePaths(m - 1, n) + uniquePaths(m, n - 1);
} //思路2
//paths[i][j]表示从(0,0)到(i,j)的路径数
int paths[101][101];
int dfs(int m, int n){
if(m < 0 || n < 0) return 0;
if(m == 1 && n == 1) return 1;
if(paths[m][n] >= 0) return paths[m][n];
return paths[m][n] = dfs(m - 1, n) + dfs(m, n - 1);
}
int uniquePaths(int m, int n){
memset(paths, -1, sizeof(paths));
return dfs(m, n);
} //思路2还有一种写法
//paths[i][j]表示从(i,j)到(m - 1,n - 1)的路径数
int paths[101][101];
int mm, nn;
int dfs(int x, int y){
if(x >= mm || y >= nn) return 0;
if(x == mm - 1 && y == nn - 1) return 1;
if(paths[x][y] >= 0) return paths[x][y];
return paths[x][y] = dfs(x + 1, y) + dfs(x, y + 1);
}
int uniquePaths(int m, int n){
mm = m, nn = n;
memset(paths, -1, sizeof(paths));
return dfs(0, 0);
} //思路3 paths[i][j] 表示(0, 0) 到(i,j)的路径数
int paths[101][101];
int uniquePaths(int m, int n){
memset(paths, 0, sizeof(paths));
for(int i = 0; i < m; ++i) paths[i][0] = 1;
for(int j = 0; j < n; ++j) paths[0][j] = 1;
for(int i = 1 ; i < m; ++i){
for(int j = 1; j < n; ++j){
paths[i][j] = paths[i - 1][j] + paths[i][j - 1];
}
}
return paths[m - 1][n - 1];
}
思路3 还有一种写法
用一个一维数组 paths[j] 表示 (0, 0) 至 (i, j)的路径数,在外循环变量为 i 时,还没更新前
paths[j] 相应上面二维数组写法的paths[i - 1, j],paths[j - 1]相应paths[i][j - 1]
int paths[101];
int uniquePaths(int m, int n){
memset(paths, 0, sizeof(paths));
paths[0] = 1;
for(int i = 0; i < m; ++i){
for(int j = 1; j < n; ++j){
paths[j] = paths[j] + paths[j - 1];
}
}
return paths[n - 1];
}
Leetcode 动态规划 Unique Paths的更多相关文章
- LeetCode 63. Unique Paths II不同路径 II (C++/Java)
题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...
- [LeetCode] 62. Unique Paths 唯一路径
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- [Leetcode Week12]Unique Paths II
Unique Paths II 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/unique-paths-ii/description/ Descrip ...
- [LeetCode] 63. Unique Paths II 不同的路径之二
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- [LeetCode] 62. Unique Paths 不同的路径
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- 【leetcode】Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- leetcode 之 Unique Paths
Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...
- LeetCode 62. Unique Paths(所有不同的路径)
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- [LeetCode] 63. Unique Paths II_ Medium tag: Dynamic Programming
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
随机推荐
- c#Ulong用一个高位Uint和低位Uint表示
有时候考虑到平台之间的通用性,可能把一个Ulong拆分成2个Uint来进行各平台之间的通讯,当时转换的时候有点头晕,对与或预算不是很熟悉,不过还是花了半小时弄出来了,代码: //ulong的最大值2^ ...
- gulp+browserfy模块化工具环境搭建
1.下载ruby,在ruby环境下安装sass; 2.安装nodejs; 3.进入当前项目所在目录,在cmd命令行中输入npm install; 4.安装browserify和gulp 安装brows ...
- robot framework环境搭建和简单示例
环境搭建 因为我的本机已经安装了python.selenium.pip等,所以还需安装以下程序 1.安装wxPythonhttp://downloads.sourceforge.net/wxpytho ...
- 十大最值得注意的MySQL变量
MySQL数据库中的变量非常多,下文为您整理出了十大最值得注意的MySQL变量,希望对您学习MySQL数据库能够有一些帮助. AD: MySQL变量很多,其中有一些MySQL变量非常值得我们注意,下面 ...
- discuz_style_default.xml 修改
<?xml version="1.0" encoding="ISO-8859-1"?> <root> <item id=" ...
- SPOJ 8222 Substrings(后缀自动机)
[题目链接] http://www.spoj.com/problems/NSUBSTR/ [题目大意] 给一个字符串S,令F(x)表示S的所有长度为x的子串中,出现次数的最大值. 求出所有的F. [题 ...
- HttpUrlConnection get和post简单实现(疑惑解决)
近期研究微信的公众平台开发.须要和微信的server进行数据读取,简单研究了下jdk自带的HttpUrlConnection类(URLConnection的子类),简单实现了一下微信的access_t ...
- nbtstat 查询IP地址对应的计算机名称
使用命令nbtstat -a ipaddress即可,例如:nbtstat -a 192.168.1.2.
- Hadoop 相关问题
1.MR Job 输入非常多,启动map 非常多,如何提高MapTask 启动速度(附加条件:集群很空闲,资源多多): 参考答案: a.重写调度器算法,降低时间复杂度 b.Out-of-bound h ...
- PHP的环境搭建
下载开发环境 wampserver 下载sublime text 2 sublime使用技巧 1:安装漂亮的编程字体http://pan.baidu.com/s/1xMex9 下载"程序编写 ...