poj3696:同余方程,欧拉定理
感觉很不错的数学题,可惜又是看了题解才做出来的
题目大意:给定一个数n,找到8888....(x个8)这样的数中,满足能整除n的最小的x,若永远无法整除n 则输出0
做了这个题和后面的poj3358给我的感觉是这种复杂的数学题一定要哦上手去写,光想永远是想不出来的= =
做法:
基于欧拉定理:若gcd(a,m)=1 ,则满足 a^φ(m) mod m=1, 即 a-1=k*m
88888(x个8)可以表示为 (10^x-1)/9*8,整除n
于是可以设 (10^x-1)/9*8=n*k ,移项得到 10^x-1=k*n*9/8
一看,刚好满足 a-1=k*m的形式,由于 n*9/8不一定为整数,所以我们令 m=n*9/gcd(n,8) 替代一个k=k*gcd(n,8)/8当作未知数
所以得到同余方程 10^x mod m=1
首先判断是否有解
由于 a mod m=gcd(a,m)的倍数 当gcd(10,m)>1时,显然无解,反之 则有解。
由欧拉定理只 φ(m)为此方程的一个解,但不一定是最小解
由于mod 乘法是有循环节的,由于 10^0 mod m=1成立 即对0,和φ(m)都成立,所以循环节要么是φ(m),要么是φ(m)的约数
所以我们只需要对φ(m)进行素因子分解,判断是否满足同余方程,就可以找到最小的解
代码:
#include <iostream>
#include <stdio.h>
#include<string.h>
#include<algorithm>
#include<string>
#include<ctype.h>
using namespace std;
#define I64d lld
long long gcd(long long a,long long b)
{
return b?gcd(b,a%b):a;
}
long long fac[];
long long nfac;
long long phi(long long n)
{
long long res=n;
for(long long i=;i*i<=n;i++)
{
if(n%i==)
{
res=res-res/i;
while(n%i==)
n/=i;
}
}
if(n>)
res=res-res/n; //可能还有大于sqrt(n)的素因子
return res; }
long long random(long long n)
{
return (long long)(rand()%(n-)+);
}
long long multi(long long a,long long b,long long m)//a*b%m
{
long long res=;
while(b>)
{
if(b&)
res=(res+a)%m;
b>>=;
a=(a<<)%m;
}
return res;
}
long long quickmod(long long a,long long b,long long m) //a^b%m
{
long long res=;
while(b>)
{
if(b&)
res=multi(res,a,m);
b>>=;
a=multi(a,a,m);
}
return res;
}
int check(long long a,long long n,long long x,long long t)
{
long long res=quickmod(a,x,n);
long long last=res;
for(int i=;i<=t;i++)
{
res=multi(res,res,n);
if(res==&&last!=&&last!=n-) return ;
last=res;
}
if(res!=) return ;
return ;
} int primetest(long long n)
{
if(n<)return ;
if(n==)return ;
if((n&)==) return ;
long long x=n-;
long long t=;
while((x&)==){x>>=;t++;}
for(int i=;i<;i++)
{
long long a=random(n);
if(check(a,n,x,t))
return ;
}
return ;
} long long pollardrho(long long n,long long c)
{
long long x,y,d,i,k;
i=;k=;
x=random(n);
y=x;
while()
{
i++;
x=(multi(x,x,n)+c)%n;
long long tmp=y-x>=?y-x:x-y;
d=gcd(tmp,n);
if(d>&&d<n)
return d;
if(y==x)
return n;
if(i==k)
{
y=x;
k+=k;
}
}
}
void findfac(long long n)
{
if(n==)
return;
if(primetest(n))
{
fac[nfac++]=n;
return;
}
long long p=n;
while(p>=n)
p=pollardrho(n,random(n-));
findfac(p);
findfac(n/p);
}
int main()
{
long long n,m;
int cas=;
while(scanf("%I64d",&n),n)
{
cas++;
m=n*/gcd(n,);
if(gcd(m,)!=)
{
printf("Case %d: %d\n",cas,);
continue;
}
long long p=phi(m);
nfac=;
findfac(p);
for(int i=;i<nfac;i++)
{
p/=fac[i];
if(quickmod(,p,m)!=)
p*=fac[i]; }
printf("Case %d: %I64d\n",cas,p);
} return ;
}
poj3696:同余方程,欧拉定理的更多相关文章
- POJ3696 The Luckiest Number 欧拉定理
昨天终于把欧拉定理的证明看明白了...于是兴冲冲地写了2道题,发现自己啥都不会qwq 题意:给定一个正整数L<=2E+9,求至少多少个8连在一起组成正整数是L的倍数. 这很有意思么... 首先, ...
- POJ3696【欧拉函数+欧拉定理】
题意: 求最小T,满足L的倍数且都由8组成,求长度: 思路: 很强势的福利:点 图片拿出去食用更优 //#include<bits/stdc++.h> #include<cstdio ...
- 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)
什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...
- poj3358:欧拉定理
又是一道用欧拉定理解的题..嗯,关键还是要建好方程,注意一些化简技巧 题目大意: 给定一个由 p / q 生成的循环小数,求此循环小数在二进制表示下的最小循环节以及不是循环节的前缀 思路: 小数化为二 ...
- 『高次同余方程 Baby Step Giant Step算法』
高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...
- 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...
- POJ_3696 The Luckiest number 【欧拉定理+同余式+对取模的理解】
一.题目 Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his ...
- COGS——T 1265. [NOIP2012] 同余方程
http://cogs.pro/cogs/problem/problem.php?pid=1265 ★☆ 输入文件:mod.in 输出文件:mod.out 简单对比时间限制:1 s 内 ...
- 高次同余方程 $BSGS$
第一篇\(Blog\)... 还是决定把\(luogu\)上的那篇搬过来了. BSGS,又名北上广深 它可以用来求\(a^x \equiv b (mod \ n)\)这个同余方程的一个解,其中\(a, ...
随机推荐
- final(最终、修饰符)
/* final(最终.修饰符) final关键字的用法: 1. final关键字修饰一个基本类型的变量时,该变量不能重新赋值,第一次的值为最终的. 2. fianl关键字修饰一个引用类型变量时,该变 ...
- [原创]# 玩转nginx系列
首先先上如何彻底删除nginx 看到这个标题的小伙伴都惊呆了,还不知道怎么搞,却叫我怎么卸载.为什么我要这样,其实,Reset也是一种解决问题的方式嘛. 首先执行下卸载命令 sudo apt-get ...
- Android中的windowSoftInputMode属性详解
这篇文章主要介绍了Android中的windowSoftInputMode属性详解,本文对windowSoftInputMode的9个属性做了详细总结,需要的朋友可以参考下 在前面的一篇文章中 ...
- Apache+Subversion+TortoiseSVN
Key words: dav_svn, apache, subversion, tortoisesvn # install apache2 sudo apt-get install libapache ...
- I/O输出端口照明LED
方案特点:I/O输出端口照明LED.而区间0.2秒闪烁!(非计时器延迟) (P1.0销被连接到LED) LED EQU P1.0 ;宏定义 ORG 0000H LJMP MAIN ORG 0200H ...
- IntelliJ IDEA 的Project structure说明
IntelliJ IDEA 的Project structure可以在File->Project structure中打开,同时,在新建项目是IDE一般用向导的方式让你填写Project str ...
- Vim 自动文件头注释与模板定义
Vim 自动文件头注释与模板定义 在vim的配置文件.vimrc添加一些配置可以实现创建新文件时自动添加文件头注释,输入特定命令可以生成模板. 使用方法 插入模式输入模式输入seqlogic[Ente ...
- error BC31019 无法写入输出文件 未指定错误
今天获取项目最后版本后,编译突然出现错误 error BC31019 无法写入输出文件 "xxx目录" 未指定错误 试着调整当前用户对这个文件的读写权限等各种方法,都未能解决该问题 ...
- EasyUI 1.4.4 DataGrid(大数据量) bufferview滚动时不加载下一页数据解决方案
在使用Easyui DataGrid 过程中,发现若单页数据量超过300,IE浏览器加载速度很慢.也通过网上找寻了很多解决方案,最典型的就是去掉datagrid的自动列宽以及自动行高判断. 1.解决自 ...
- System.Net网络编程--AuthenticationManager和IAuthenticationModule
AuthenticationManager——管理客户端身份验证过程中调用的身份验证模块. public class Demo1 { private static string username, p ...