Fundamental types

Void type

void-type with an empty set of values.There are no arrays of void,nor references to void.However,pointers to void and function returning type void are permitted.
std::nullptr_t

Boolean type

bool-type,capable of holding one of the tow values:true or false

Character types

signed char
unsigned char
char
wchar_t
char16_t
char32_t

Integer types

int - basic integer type.The keyword int may omitted if any of the modifiers listed below are used. If no length modifiers present,it's guaranteed to have a width of at least 16 bits.However,on 32/64 bit system is is almost exclusively guaranteed to have width of at least 32 bits.

Modifiers

Modifies the integer type.Can be mixed in any order. Only one of each group can be present in type name.

Signedness

signed-target type will have signed representation(this is the default if omitted)
unsigned- target type will have unsigned representation

Size

short-target type will be optimized for space and will have width of at least 16bits
long-target type will have width of at least 32 bits.

long long-target type will have width of at least 64 bits.(since C++11)

即int为integer type的基本类型,通过添加修饰符(modifiers)signedor unsignedshort or long or long long来实现存储空间位数的大小,C++保证每一个类型的最小位数

Properties

LP=Long Point
LLP=Long Long Point
The following table summarizes all available integer types and their properties:

Type Specifier Equivalent Type C++Standard LP32 ILP32 LLP64 LP64
short short int at least 16 16 16 16 16
short int short int at least 16 16 16 16 16
signed int short int at least 16 16 16 16 16
signed short int short int at least 16 16 16 16 16
unsigned short unsigned short int at least 16 16 16 16 16
unsigned short int unsigned short int at least 16 16 16 16 16
int int at least 16 16 32 32 32
signed int at least 16 16 32 32 32
signed int int at least 16 16 32 32 32
unsigned unsigned int at least 16 16 32 32 32
unsigned int unsigned int at least 16 16 32 32 32
long long int at least 32 32 32 32 64
signed long long int at least 32 32 32 32 64
signed long int long int at least 32 32 32 32 64
unsigned long unsigned long int at least 32 32 32 32 64
unsigned long int unsigned long int at least 32 32 32 32 64
long long long long int at least 32 64 64 64 64
long long int long long int at least 32 64 64 64 64
signed long long long long int at least 32 64 64 64 64
signed long long int long long int at least 32 64 64 64 64
unsigned long long long long int at least 32 64 64 64 64
unsigned long long unsigned long long int
since C++11
at least 32 64 64 64 64
unsigned long long int unsigned long long int
since C++11
at least 32 64 64 64 64

Besides the minimal bit counts,the C++ Standard guaranteed that
1 == sizeof(char) <= sizeof(short) <= sizeof(int) <= sizeof(long) <= sizeof(long long)

Note:integer arithmetic is defined differently for signed and unsigned integer types.See arithmetic operators,in particular integer overflows

Win64 is a LLP64 platform, while Solaris and Linux are LP64 platforms. Thus the only safe way to store pointers in integer types is either always use uintptr_t (defined in stdint.h not included at least with MSVC2003 and earlier), or always use long long fields.

Data models

The choices made by each implementation about the sizes of the fundamental types are collectively known as data model. Four data models found wide acceptance:
32 bit systems:

  • LP32 or 2/4/4 (int is 16-bit, long and pointer are 32-bit)

    • Win16API
      64 bit systems:
  • LLP64 or 4/4/8 (int and long are 32-bit, pointer is 64-bit)
    • Win64 API
  • LP64 or 4/8/8 (int is 32-bit, long and pointer are 64-bit)
    • Unix and Unix-like systems (Linux, Mac OS X)

      Floating-point types

      float- single precision floating point type.Usually IEEE-754 32 bit floating point type
      double - double precision floating point type. Usually IEEE-754 64 bit floating point type
      long double - extended precision floating point type. Does not necessarily map to types mandated by IEEE-754. Usually 80-bit x87 floating point type on x86 and x86-64 architectures

      Floating-point properties

      Floating-point types may support special values:

  • infinity (positive and negative)
  • the negative zero.-0.0.It compares equal to the positive zero, but is meaningful in some arithmetic operations, e.g. 1.0/0.0 == INFINITY, but 1.0/-0.0 == -INFINITY), and for some mathematical functions, e.g. sqrt(std::complex)
  • not-a-number (NaN), which does not compare equal with anything (including itself).

Real floating-point numbers may be used with arithmetic operators + - / * and various mathematical functions from cmath. Both built-in operators and library functions may raise floating-point exceptions and set errno as described in math_errhandling.

浮点数的精度表示FLT_EVAL_METHOD和精收缩问题#pragma STDC FP_CONTRACT
Floating-point expressions may have greater range and precision than indicated by their types, see FLT_EVAL_METHOD. Floating-point expressions may also be contracted, that is, calculated as if all intermediate values have infinite range and precision, see #pragma STDC FP_CONTRACT.

Implicit conversions are defined between real floating types and integer types.

See Limits of floating point types and std::numeric_limits for additional details, limits, and properties of the floating-point types.

Note: actual (as opposed to guaranteed minimal) limits on the values representable by these types are available in <climits>, <cfloat> and std::numeric_limits

Fundamental types的更多相关文章

  1. The main difference between Java & C++(转载)

    转载自:http://stackoverflow.com/questions/9192309/the-main-difference-between-java-c C++ supports point ...

  2. Java Main Differences between Java and C++

    转载自:http://www.cnblogs.com/springfor/p/4036739.html C++ supports pointers whereas Java does not. But ...

  3. char, signed char, and unsigned char in C++

    关于这三者的区别stackoverrflow里有一个答案是这样说的: 3.9.1 Fundamental types [basic.fundamental] 1 Objects declared as ...

  4. Java中接口作为方法的返回

    在<算法>中的散列表一节,在用拉链法实现散列表的API时要求实现以下一个方法: public Iterable<Key> keys() 我们知道Iterable是一个接口,那么 ...

  5. C++ Bit Fields

    http://msdn.microsoft.com/en-us/library/ewwyfdbe%28v=vs.71%29.aspx Note An unnamed bit field of widt ...

  6. Open CASCADE 基础类(Foundation Classes)

    1 介绍(Introduction) 1 如何使用Open CASCADE技术(OCCT)基础类. This manual explains how to use Open CASCADE Techn ...

  7. 《Velocity java开发指南》中文版(上)转载

    文章引自:http://sakyone.iteye.com/blog/524289 1.开始入门 Velocity是一基于java语言的模板引擎,使用这个简单.功能强大的开发工具,可以很容易的将数据对 ...

  8. (转) class II

    Overloading operators   Classes, essentially, define new types to be used in C++ code. And types in ...

  9. (转) Class

    Classes are an expanded concept of data structures: like data structures, they can contain data memb ...

随机推荐

  1. BZOJ 2821: 作诗(Poetize)( 分块 )

    分块,分成N^0.5块.O(N^1.5)预处理出sm[i][j]表示前i块中j的出现次数, ans[i][j]表示第i~j块的答案. 然后就可以O(N^0.5)回答询问了.总复杂度O((N+Q)N^0 ...

  2. JAVA语言规范和API网址

    Java语言规范: http://docs.oracle.com/javase/specs/ Java API: http://docs.oracle.com/javase/8/docs/api/in ...

  3. android-JSON解析

    构建JSON文本 方法1. // 假设现在要创建这样一个json文本 // { // "phone" : ["12345678", "87654321 ...

  4. 1TB到底能存放多少东西?

    网盘大战逐渐升级,360和百度网盘先后推出的1TB网盘存储,而腾讯甚至为其微云网盘打出10TB的招牌来哄抢用户. 这里我们聊聊1TB的网盘究竟能放多少东西? 以下是我在网上找到的一些资料. 一)30年 ...

  5. delphi 编译生成ipa文件

    找IPA文件 开发模式ipa文件和发布模式ipa文件,路径不同. http://www.itnose.net/detail/6101808.html 一.开发模式Development 不需要真机,可 ...

  6. 一个php user class

    这个类叫php user class.php user class is an easy to use php snippet for user manipulation (register, log ...

  7. lwp 模拟行锁堵塞 前端超时

    jrhmpt01:/root/async# cat a2.pl use LWP::UserAgent; use utf8; use DBI; use POSIX; use HTTP::Date qw( ...

  8. CTreeCtrl 控件使用总结

    一 基础操作  1 插入节点 1)插入根节点 [cpp] view plaincopy //插入根节点 HTREEITEM hRoot; CString str=L"ROOT" h ...

  9. android基础篇------------java基础(12)(多线程操作)

    <一>基本概念理解 1.什么是进程? 进程就是在某种程度上相互隔离,独立运行的程序.一般来说,系统都是支持多进程操作的,这所谓的多进程就是让系统好像同时运行多个程序. 2.什么是线程呢? ...

  10. echarts 应用数个样例

    应用一:环形图和饼图嵌套 先说明一下内部文件分布: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdGV4dGJveQ==/font/5a6L5L2T/fo ...