二分+dfs。

这道题求图的最小环的每条边的权值的平均值μ。

这个平均值是大有用处的,求它我们就不用记录这条环到底有几条边构成。

如果我们把这个图的所有边的权值减去μ,就会出现负环。

所以二分求解。

#include<cstdio>
#include<algorithm>
#include<cstring>
#define eps 1e-10
using namespace std;
const int maxn = + ;
const int maxm = + ;
int g[maxn],v[maxm],next[maxm],eid;
double w[maxm],dist[maxn],e[maxm],c;
bool vis[maxn];
int n,m; void addedge(int a,int b,double c) {
v[eid]=b; w[eid]=c; next[eid]=g[a]; g[a]=eid++;
} void build() {
memset(g,-,sizeof(g));
scanf("%d%d",&n,&m);
for(int i=,a,b;i<=m;i++) {
scanf("%d%d%lf",&a,&b,&c);
addedge(a,b,c);
}
} bool dfs(int u) {
vis[u]=;
for(int i=g[u];~i;i=next[i]) if(dist[v[i]]>dist[u]+e[i]) {
if(vis[v[i]]) return true;
dist[v[i]]=dist[u]+e[i];
if(dfs(v[i])) return true;
}
vis[u]=;
return false;
} bool calc() {
memset(dist,,sizeof(dist));
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++) if(dfs(i)) return ;
return ;
} void solve() {
double l = -1e9,r=1e9,mid;
while(r-l>=eps) {
mid=(l+r)/;
for(int u=;u<=n;u++)
for(int i=g[u];~i;i=next[i])
e[i]=w[i]+mid;
if(calc()) l=mid;
else r=mid;
}
printf("%.8lf\n",-l);
} int main() {
build();
solve();
return ;
}

bzoj1486: [HNOI2009]最小圈的更多相关文章

  1. BZOJ1486 HNOI2009 最小圈 【01分数规划】

    BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...

  2. bzoj千题计划227:bzoj1486: [HNOI2009]最小圈

    http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...

  3. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  4. 分数规划(Bzoj1486: [HNOI2009]最小圈)

    题面 传送门 分数规划 分数规划有什么用? 可以把带分数的最优性求解式化成不带除发的运算 假设求max{\(\frac{a}{b},b>0\)} 二分一个权值\(k\) 令\(\frac{a}{ ...

  5. BZOJ1486:[HNOI2009]最小圈(最短路,二分)

    Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Sample Output 3.66666667 Sol ...

  6. [bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环

    题目 传送门 题解 这个题是一个经典的分数规划问题. 把题目形式化地表示,就是 \[Minimize\ \lambda = \frac{\sum W_{i, i+1}}{k}\] 整理一下,就是 \[ ...

  7. 【BZOJ1486】[HNOI2009]最小圈 分数规划

    [BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...

  8. bzoj 1486: [HNOI2009]最小圈 dfs求负环

    1486: [HNOI2009]最小圈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1022  Solved: 487[Submit][Status] ...

  9. BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )

    二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...

随机推荐

  1. 查看Linux磁盘空间大小

    一.df 命令: df 是来自于coreutils 软件包,系统安装时,就自带的:我们通过这个命令可以查看磁盘的使用情况以及文件系统被挂载的位置: 举例: [root@localhost beinan ...

  2. javacript中的mvc设计模式

    以下内容为原创翻译,翻译不对的地方还请原谅,凑合着看吧. 原文网址是: 来源:http://www.alexatnet.com/articles/model-view-controller-mvc-j ...

  3. C# Log4Net配置

    Log4Net是用来记录日志的,可以将程序运行过程中的信息输出到一些地方(文件.数据库.EventLog等),日志就是程序的黑匣子,可以通过日志查看系统的运行过程,从而发现系统的问题.日志的作用:将运 ...

  4. hdu 2582 f(n) 数学

    打表找规律: 当n为质数是,GCD(n)=n; 当n为质数k的q次方时,GCD(n)=k; 其他情况,GCD(n)=1. 代码如下: #include<iostream> #include ...

  5. Struts2 本是非单例的,与Spring集成就默认为单例

    1.Struts2本身action类是多例,此设计的原因在于本身action担任了数据载体,如果做成单例,则会便多用户数据受到影响: 2.当Struts2 与 spring整合时,Struts2的Ac ...

  6. ASP.NET 免费开源控件

    AspNetPager分页控件(当前版本:7.5.1) AspNetPager分页控件是应用于ASP.NET WebForm网站或应用程序中的自定义分页控件,支持默认的回发(Postback)分页和U ...

  7. P1024 外星人的密码数字

    P1024 外星人的密码数字 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述     XXXX年突然有外星人造访,但大家语言不通,不过科学家们经过研究发现外星 ...

  8. FWT 学习总结

    我理解的FWT是在二元运算意义下的卷积 目前比较熟练掌握的集合对称差卷积 对于子集卷积和集合并卷积掌握不是很熟练(挖坑ing) 那么就先来谈一谈集合对称差卷积吧 所谓集合对称差卷积 就是h(i)=si ...

  9. lintcode :continuous subarray sum 连续子数组之和

    题目 连续子数组求和 给定一个整数数组,请找出一个连续子数组,使得该子数组的和最大.输出答案时,请分别返回第一个数字和最后一个数字的值.(如果两个相同的答案,请返回其中任意一个) 样例 给定 [-3, ...

  10. lintcode:在二叉查找树中插入节点

    题目:  在二叉查找树中插入节点 给定一棵二叉查找树和一个新的树节点,将节点插入到树中. 你需要保证该树仍然是一棵二叉查找树.  样例 给出如下一棵二叉查找树,在插入节点6之后这棵二叉查找树可以是这样 ...