bzoj1486: [HNOI2009]最小圈
二分+dfs。
这道题求图的最小环的每条边的权值的平均值μ。
这个平均值是大有用处的,求它我们就不用记录这条环到底有几条边构成。
如果我们把这个图的所有边的权值减去μ,就会出现负环。
所以二分求解。
#include<cstdio>
#include<algorithm>
#include<cstring>
#define eps 1e-10
using namespace std;
const int maxn = + ;
const int maxm = + ;
int g[maxn],v[maxm],next[maxm],eid;
double w[maxm],dist[maxn],e[maxm],c;
bool vis[maxn];
int n,m; void addedge(int a,int b,double c) {
v[eid]=b; w[eid]=c; next[eid]=g[a]; g[a]=eid++;
} void build() {
memset(g,-,sizeof(g));
scanf("%d%d",&n,&m);
for(int i=,a,b;i<=m;i++) {
scanf("%d%d%lf",&a,&b,&c);
addedge(a,b,c);
}
} bool dfs(int u) {
vis[u]=;
for(int i=g[u];~i;i=next[i]) if(dist[v[i]]>dist[u]+e[i]) {
if(vis[v[i]]) return true;
dist[v[i]]=dist[u]+e[i];
if(dfs(v[i])) return true;
}
vis[u]=;
return false;
} bool calc() {
memset(dist,,sizeof(dist));
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++) if(dfs(i)) return ;
return ;
} void solve() {
double l = -1e9,r=1e9,mid;
while(r-l>=eps) {
mid=(l+r)/;
for(int u=;u<=n;u++)
for(int i=g[u];~i;i=next[i])
e[i]=w[i]+mid;
if(calc()) l=mid;
else r=mid;
}
printf("%.8lf\n",-l);
} int main() {
build();
solve();
return ;
}
bzoj1486: [HNOI2009]最小圈的更多相关文章
- BZOJ1486 HNOI2009 最小圈 【01分数规划】
BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...
- bzoj千题计划227:bzoj1486: [HNOI2009]最小圈
http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...
- 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)
传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...
- 分数规划(Bzoj1486: [HNOI2009]最小圈)
题面 传送门 分数规划 分数规划有什么用? 可以把带分数的最优性求解式化成不带除发的运算 假设求max{\(\frac{a}{b},b>0\)} 二分一个权值\(k\) 令\(\frac{a}{ ...
- BZOJ1486:[HNOI2009]最小圈(最短路,二分)
Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Sample Output 3.66666667 Sol ...
- [bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环
题目 传送门 题解 这个题是一个经典的分数规划问题. 把题目形式化地表示,就是 \[Minimize\ \lambda = \frac{\sum W_{i, i+1}}{k}\] 整理一下,就是 \[ ...
- 【BZOJ1486】[HNOI2009]最小圈 分数规划
[BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...
- bzoj 1486: [HNOI2009]最小圈 dfs求负环
1486: [HNOI2009]最小圈 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1022 Solved: 487[Submit][Status] ...
- BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )
二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...
随机推荐
- Careercup - Facebook面试题 - 4909367207919616
2014-05-01 01:23 题目链接 原题: WAP to modify the array such that arr[I] = arr[arr[I]]. Do this in place i ...
- Java学习第七篇:与运行环境交互
目录 一.与用户互动 1.main方法形参 2.使用Scanner类获取输入 3.使用BufferedReader类获取输入 二.常用类 1.System类和Runtime类 2.String, St ...
- Linq to EF 与Linq to Object 使用心得
大家都知道Linq既可以用来查询数据库对象(我这里指的是Entity FrameWork里的Model对象),也可以用来查询内存中的IEnumerable对象. 两者单独查询时都不会出现什么问题,不过 ...
- java基础知识回顾之javaIO类--File类应用:递归深度遍历文件
代码如下: package com.lp.ecjtu.File.FileDeepList; import java.io.File; public class FileDeepList { /** * ...
- JDK与JRE
dos命令行中常见的命令: 1.dir:列出当前目录下的文件以及文件夹 2.md:创建目录(即文件夹) |-----C:\>md kkk(在C盘下创建了一个名为kkk的文件夹) 3.rd:删除目 ...
- IIS常见错误及解决
IIS常见错误 1.HTTP 错误 404.3 - Not Found由于扩展配置问题而无法提供您请求的页面.如果该页面是脚本,请添加处理程序.如果应下载文件,请添加 MIME 映射. 解决办法: w ...
- [Python]读写文件方法
http://www.cnblogs.com/lovebread/archive/2009/12/24/1631108.html [Python]读写文件方法 http://www.cnblogs.c ...
- HTML5入门十---Canvas画布实现画图(一)
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- Android:Android SDK Manager顺利下载
默认的Android SDK只有Android 4.4的版本,如果需要其他版本的模拟器,需要Android SDK Manager下载, 1.打开Eclipse 2.选择Android SDK Man ...
- java:类集框架
类集框架:jdk提供的一系列类和接口,位于java.util包当中,主要用于存储和管理对象,主要分为三大类:集合.列表和映射. 集合Set:用于存储一系列对象的集合.无序.不允许重复元素. 列表Lis ...