Data Structure Problem

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://acm.uestc.edu.cn/#/problem/show/483

Description

Data structure is a fundamental course of Computer Science, so that each contestant is highly likely to solve this data structure problem.

A Heap data structure is a binary tree with the following properties:

It is a complete binary tree; that is, each level of the tree is completely filled, except possibly the bottom level. At this level, it is filled from left to right.
It satisfies the heap-order property: The key stored in each node is greater than or equal to the keys stored in its children.
So such a heap is sometimes called a max-heap. (Alternatively, if the comparison is reversed, the smallest element is always in the root node, which results in a min-heap.)

A binary search tree (BST), which may sometimes also be called an ordered or sorted binary tree, is a node-based binary tree data structure which has the following properties:

The left subtree of a node contains only nodes with keys less than (greater than) the node's key.
The right subtree of a node contains only nodes with keys greater than (less than) the node's key.
Both the left and right subtrees must also be binary search trees.
Given a complete binary tree with $N$ keys, your task is to determine the type of it.

Note that either a max-heap or a min-heap is acceptable, and it is also acceptable for both increasing ordered BST and decreasing ordered BST.

Input

The first line of the input is $T$ (no more than $100$), which stands for the number of test cases you need to solve.

For each test case, the first line contains an integer $N$ ($1 \leq N \leq 1000$), indicating the number of keys in the binary tree. On the second line, a permutation of $1$ to $N$ is given. The key stored in root node is given by the first integer, and the $2i_{th}$ and $2i+1_{th}$ integers are keys in the left child and right child of the $i_{th}$ integer respectively.

Output

For every test case, you should output Case #k: first, where $k$ indicates the case number and counts from $1$. Then output the type of the binary tree:

Neither — It is neither a Heap nor a BST.
Both — It is both a Heap and a BST.
Heap — It is only a Heap.
BST — It is only a BST.

Sample Input

4
1
1
3
1 2 3
3
2 1 3
4
2 1 3 4

Sample Output

Case #1: Both
Case #2: Heap
Case #3: BST
Case #4: Neither

HINT

题意

给你n个数,然后这n个数构成的二叉树,是平衡二叉树还是堆

题解:

直接dfs就好了

代码

#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define test freopen("test.txt","r",stdin)
const int maxn=;
#define mod 1000000007
#define eps 1e-9
const int inf=0x3f3f3f3f;
const ll infll = 0x3f3f3f3f3f3f3f3fLL;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//************************************************************************************* int flag1=,flag2=,flag3=,flag4=;
int n;
int a[maxn];
void dfs(int x)
{
if(flag1==)
return;
if(a[x*]!=)
{
if(a[x*]<a[x])
flag1=;
dfs(*x);
}
if(a[x*+]!=)
{
if(a[x*+]<a[x])
flag1=;
dfs(*x+);
}
} void dfs3(int x)
{
if(flag4==)
return;
if(a[x*]!=)
{
if(a[x*]>a[x])
flag4=;
dfs3(*x);
}
if(a[x*+]!=)
{
if(a[x*+]>a[x])
flag4=;
dfs3(*x+);
}
}
void dfs1(int x)
{
if(flag2==)
return;
if(a[x*]!=)
{
if(a[x*]<=a[x])
flag2=;
dfs1(*x);
}
if(a[x*+]!=)
{
if(a[x*+]>=a[x])
flag2=;
dfs1(*x+);
}
}
void dfs2(int x)
{
if(flag3==)
return;
if(a[x*]!=)
{
if(a[x*]>=a[x])
flag3=;
dfs2(*x);
}
if(a[x*+]!=)
{
if(a[x*+]<=a[x])
flag3=;
dfs2(*x+);
}
}
int main()
{
int t=read();
for(int cas=;cas<=t;cas++)
{
memset(a,,sizeof(a));
flag1=,flag2=,flag3=,flag4=;
n=read();
for(int i=;i<=n;i++)
a[i]=read();
dfs();
flag2=;
dfs1();
flag3=;
dfs2();
flag4=;
dfs3();
//cout<<flag1<<" "<<flag2<<" "<<flag3<<" "<<flag4<<endl;
if((flag1||flag4)&&(flag2||flag3))
printf("Case #%d: Both\n",cas);
else if((flag1||flag4)&&!(flag2||flag3))
printf("Case #%d: Heap\n",cas);
else if(!(flag1||flag4)&&(flag2||flag3))
printf("Case #%d: BST\n",cas);
else if(!(flag1||flag4)&&!(flag2||flag3))
printf("Case #%d: Neither\n",cas);
}
}

CDOJ 483 Data Structure Problem DFS的更多相关文章

  1. ZOJ 4009 And Another Data Structure Problem(ZOJ Monthly, March 2018 Problem F,发现循环节 + 线段树 + 永久标记)

    题目链接  ZOJ Monthly, March 2018 Problem F 题意很明确 这个模数很奇妙,在$[0, mod)$的所有数满足任意一个数立方$48$次对$mod$取模之后会回到本身. ...

  2. [hdu7099]Just Another Data Structure Problem

    不难发现,问题即求满足以下条件的$(i,j)$对数: 1.$1\le i<j\le n$且$a_{i}=a_{j}$ 2.$\min_{i\le k\le j}y_{k}\ge l$且$\max ...

  3. [hdu7097]Just a Data Structure Problem

    (四边形不等式的套路题) 对于某一组$a_{i}$,显然可以区间dp,设$f_{l,r}$表示区间$[l,r]$​的答案,则转移即$$f_{l,r}=\begin{cases}0&(l=r)\ ...

  4. HDU 6649 Data Structure Problem(凸包+平衡树)

    首先可以证明,点积最值的点对都是都是在凸包上,套用题解的证明:假设里两个点都不在凸包上, 考虑把一个点换成凸包上的点(不动的那个点), 不管你是要点积最大还是最小, 你都可以把那个不动的点跟原点拉一条 ...

  5. [LeetCode] Add and Search Word - Data structure design 添加和查找单词-数据结构设计

    Design a data structure that supports the following two operations: void addWord(word) bool search(w ...

  6. 211. Add and Search Word - Data structure design

    题目: Design a data structure that supports the following two operations: void addWord(word) bool sear ...

  7. Add and Search Word - Data structure design 解答

    Question Design a data structure that supports the following two operations: void addWord(word) bool ...

  8. LeetCode208 Implement Trie (Prefix Tree). LeetCode211 Add and Search Word - Data structure design

    字典树(Trie树相关) 208. Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith  ...

  9. HDU5739 Fantasia(点双连通分量 + Block Forest Data Structure)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5739 Description Professor Zhang has an undirect ...

随机推荐

  1. Delphi or函数的用法

    function GetFlag(a: string): Integer;var I: Integer;begin Result := 0; for I := 0 to 3 - 1 do begin ...

  2. Oracle 存储过程的创建,及触发器调用存储过程

    一.创建存储过程 1.存储过程写法 create or replace procedure HVM_BYQ_TJ --变压器统计信息--->入库 (id in number) as begin ...

  3. 翻译【ElasticSearch Server】第一章:开始使用ElasticSearch集群(2)

    安装和配置集群(Installing and Configuring your Cluster) 第一步是确保正确安装了 Java SE环境.ElasticSearch需要版本6或更高的版本,可以从下 ...

  4. IOS UIView(UIButton)通过显示动画移动的时候 响应点击的解决方案

    今天在做一个UIButton显示动画的时候,遇到一个问题,就是在移动的时候 ,需要相应它的点击时间(click) 通过CAKeyframeAnimation 来移动UIButton的layer ,效果 ...

  5. bug报告-常用词汇中英对照表

  6. 用javascript 面向对象制作坦克大战(三)

    之前,我们完成了坦克的移动和地图的绘制,这次我们来完成碰撞检测和炮弹的发射. 上代码前来张最新的类图: 3. 碰撞检测     前面我们已经完成了坦克的移动和地图的绘制,下面我们开始写碰撞检测. 3. ...

  7. Java连接Sql Server2008

    参考:http://weistar.iteye.com/blog/1744871 准备工作: 1.下载JDBC驱动包:http://www.microsoft.com/zh-cn/download/d ...

  8. [GRYZ2015]Graph

    题目描述 给出 N 个点,M 条边的有向图,对于每个点 v,求 A(v) 表示从点 v 出发,能到达的编号最大的点. 输入格式 第 1 行,2 个整数 N,M. 接下来 M 行,每行 2 个整数 Ui ...

  9. Motan:目录结构

    motan是由maven管理的,在最外层的pom.xml中可以看出这个项目有多个模块组成. <modules> <module>motan-core</module> ...

  10. [Hive - LanguageManual] GroupBy

    Group By Syntax Simple Examples Select statement and group by clause Advanced Features Multi-Group-B ...