斜率优化dp,比较裸

注意int64的运算

 var f,a,q:array[..] of int64;
    i,n,h,t:longint;
    x,y,z:int64; function g(j,k:int64):double;
  var p,q:double;
  begin
    p:=*(f[k]-f[j])+sqr(k)-sqr(j)-k+j;
    q:=*(k-j);
    exit(p/q);
  end; begin
  readln(n);
  for i:= to n do
    read(a[i]);
  h:=;
  t:=;
  q[]:=n;
  f[n]:=a[n];
  for i:=n- downto do
  begin
    while (h<t) and (g(q[h],q[h+])>i) do inc(h);
    x:=q[h];
    y:=i;
    z:=(x-y)*(x-y-);
    f[i]:=(*f[q[h]]+z) div +a[i];
    if i<> then
    begin
      while (h<t) and (g(q[t],i)>g(q[t-],q[t])) do dec(t);
      inc(t);
      q[t]:=i;
    end;
  end;
  writeln(f[]);
end.

bzoj3156的更多相关文章

  1. 【bzoj3156】 防御准备

    http://www.lydsy.com/JudgeOnline/problem.php?id=3156 (题目链接) 题意 给出n个防御节点,每个节点有两种选择,可以花费a[i]建立一个防御塔,或者 ...

  2. BZOJ3156 防御准备 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8688187.html 题目传送门 - BZOJ3156 题意 长为$n$的序列$A$划分,设某一段为$[i,j] ...

  3. BZOJ3156 防御准备(动态规划+斜率优化)

    设f[i]为在i放置守卫塔时1~i的最小花费.那么显然f[i]=min(f[j]+(i-j)*(i-j-1)/2)+a[i]. 显然这是个斜率优化入门题.将不与i.j同时相关的提出,得f[i]=min ...

  4. 【BZOJ3156】防御准备 斜率优化

    [BZOJ3156]防御准备 Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小 ...

  5. 【BZOJ3156】防御准备(动态规划,斜率优化)

    [BZOJ3156]防御准备(动态规划,斜率优化) 题面 BZOJ 题解 从右往左好烦啊,直接\(reverse\)一下再看题. 设\(f[i]\)表示第\(i\)个位置强制建立检查站时,前面都满足条 ...

  6. 【BZOJ3156】防御准备 斜率优化DP

    裸题,注意:基本的判断(求Min还是Max),因为是顺着做的,且最后一个a[i]一定要取到,所以是f[n]. DP:f[i]=min(f[j]+(i-j-1)*(i-j)/2+a[i]) 依旧设x&g ...

  7. [BZOJ3156]防御准备(斜率优化DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP

  8. 【BZOJ-3156】防御准备 DP + 斜率优化

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 951  Solved: 446[Submit][Status][Discuss] ...

  9. BZOJ3156: 防御准备

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 442  Solved: 210[Submit][Status] Descript ...

随机推荐

  1. js 根据当前星期做跳转(代码段)

    var week = [6,0,1,2,3,4,5]; $('.HotShop_head .HotShop_tab:eq('+week[new Date().getDay()]+')').click( ...

  2. Random类(java.util)

    转自 Random类中实现的随机算法是伪随机,也就是有规则的随机.在进行随机时,随机算法的起源数字称为种子数(seed),在种子数的基础上进行一定的变换,从而产生需要的随机数字. 相同种子数的Rand ...

  3. python自定义线程池

    关于python的多线程,由与GIL的存在被广大群主所诟病,说python的多线程不是真正的多线程.但多线程处理IO密集的任务效率还是可以杠杠的. 我实现的这个线程池其实是根据银角的思路来实现的. 主 ...

  4. python学习笔记14(多态、封装、继承)

    创建自已的对象(尤其是类型或者被称为类的对象)是python非常核心的概念. 多态: 可对不同类的对象使用同样的操作. 封装:对外部世界隐藏对象的工作细节. 继承:以普通的类为基础建立专门的类对象. ...

  5. c#面向对象机制的进一步理解

    今天看到一个面试题很有意思: namespace EventTest{ class Program { static void Main(string[] args) { A a = new C(); ...

  6. java小提示:标示符常见命名规则、常用ASCII

    标示符常见命名规则: A:包:全部小写B:类或者接口:首字母大写:StudentC:方法或者接口:首字母小写,第二个单词开始开始,每个单词首字母大写:studentAgeD:常量:全部大写,多个单词之 ...

  7. nginx流量带宽等请求状态统计( ngx_req_status)

    介绍 ngx_req_status用来展示nginx请求状态信息,类似于apache的status,nginx自带的模块只能显示连接数等等信息,我们并不能知道到底有哪些请求.以及各url域名所消耗的带 ...

  8. HTML5 中的块级链接

    英文叫做 “Block-level” links,我以为只有我厂那些鸟毛不知道,没想到不知道的还挺多, 需要普及一下. 最近看了 kejun 的 PPT 前端开发理论热点面对面:从怎么看,到怎么做?, ...

  9. 【高斯消元】BZOJ 1770: [Usaco2009 Nov]lights 燈

    Description 貝希和她的閨密們在她們的牛棚中玩遊戲.但是天不從人願,突然,牛棚的電源跳閘了,所有的燈都被關閉了.貝希是一個很膽小的女生,在伸手不見拇指的無盡的黑暗中,她感到驚恐,痛苦與絕望. ...

  10. 写作技巧--Simile明喻